簡易檢索 / 詳目顯示

研究生: 陳亮瑜
Chen, Liang-Yu
論文名稱: 聚電解質與膠原蛋白階層式界面調控磷酸鈣礦化之研究
Cooperative Calcium Phosphate Mineralization on Hierarchical Polyelectrolyte/Collagen Assemblies
指導教授: 李介仁
Li, Jie-Ren
陳巧貞
Chen, Chiao-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 94
中文關鍵詞: 磷酸鈣礦化催化性印章表面修飾微奈米圖案轉印
外文關鍵詞: calcium phosphate mineralization, catalytic stamp, surface functionalization, micro-nanopattern transfer
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討表面化學性質與微奈米結構對磷酸鈣(CaP)礦化行為的影響。並藉由製備具空間階層性的仿生界面,模擬生理條件下的成核環境。在第一部份,我們結合自上而下(top-down)和自下而上(bottom-up)的製程策略,以可塑性聚合物,polydimethylsiloxane(PDMS),作為印章(stamp),在目標基材表面上建立大面積微奈米結構圖案,另外,我們藉由交聯劑將有序排列的第一型膠原蛋白,以共價作用力轉移至目標基材表面上。礦化結果顯示,固定膠原蛋白的基材上所形成的磷酸鈣晶體粒徑大於無膠原蛋白之對照組,顯示膠原蛋白介面可促進晶體成長;此外,具1.4 µm週期線狀結構的樣品,其礦物粒徑亦略大於2 µm 圓形結構,說明表面幾何形貌對晶體形貌亦具調控效應。
    在研究的第二部分,我們以三種具不同官能基的矽烷分子製備自組裝單分子層(SAMs),分別為:具疏水性甲基(–CH₃)的十八烷基三氯矽烷(OTS)、帶正電氨基(–NH3+)的N-[3-三甲氧基甲矽烷基丙基]-1,6-己二胺(AHAP3),以及具有高度親水聚醚類官能基(–OCH3)的2-甲氧基(聚氧乙烯)丙基-三甲氧基矽烷(PEG)。將這些修飾表面浸入磷酸鈣礦化溶液後,結果卻顯示,最疏水的 OTS表面的礦物覆蓋率最高。我們推測此結果可能是極性官能基在水相環境中形成穩定水化層,屏蔽離子吸附,抑制了初始成核的發生。進一步比較具有微奈米線狀結構與平坦表面的矽烷薄膜後發現,具結構者的礦物覆蓋率顯著提升。
    綜合而言,我們的研究結果說明表面能、官能基極性與微奈米尺度的結構,可共同調控磷酸鈣的異質行為。此研究對於發展仿生礦化材料、骨修復塗層與組織工程支架的表面設計提供參考價值。

    This study aims to investigate the effects of surface chemistry and structures on the mineralization behavior of calcium phosphate (CaP). In the first part, we combined top-down and bottom-up fabrication strategies using polydimethylsiloxane(PDMS) as a flexible stamp to generate large-area micro-nanopatterns on target substrates. In addition, type I collagen was covalently transferred onto the substrate surface through crosslinking to create an ordered organic matrix. Mineralization results showed that CaP crystals formed on collagen-coated substrates were larger than those on unmodified substrates. Moreover, samples with 1.4 µm line-patterned structures yielded slightly larger mineral particles than those with 2 µm circular features. In the second part, three silane thin films with different functional groups were modified on silicon substrates: hydrophobic methyl (–CH₃, OTS), positively charged amino (–NH₃⁺, AHAP3), and highly hydrophilic methoxy-terminated PEG (–OCH₃). To our surprise, the most hydrophobic surface (OTS) exhibited the highest mineral coverage. Furthermore, a comparison between patterned and flat silane-modified surfaces showed that the presence of patterns significantly enhanced mineral coverage. Overall, our results demonstrate that surface chemistry and structure collectively regulate heterogeneous CaP mineralization. This study provides valuable insights for designing surface-functionalized materials for biomimetic mineralization, bone repair coatings, and tissue engineering scaffolds.

    目錄1 圖目錄4 表目錄8 第一章 緒論9 1.1 生物礦化9 1.1.1 生物礦化的種類9 1.1.2 成核機制:經典成核理論10 1.1.3 成核機制:非經典成核理論13 1.1.4 生物礦化在醫學工程中的應用15 1.2 磷酸鈣合成方法16 1.2.1 乾式合成法(Dry Method) 16 1.2.2 濕式合成法(Wet Method)17 1.2.3 高溫法(High temperature method)17 1.3 儀器分析工具 19 1.3.1 原子力顯微鏡 (AFM, atomic force microscopy)19 1.3.2 掃描式電子顯微鏡(scanning electron microscope)20 1.4 研究動機22 第二章 藉由酵素催化性模板製備不同幾何形狀之微奈米結構24 2.1 實驗藥品與儀器24 2.1.1 實驗藥品24 2.1.2 實驗儀器25 2.2 實驗步驟26 2.2.1 PDMS模板26 2.2.2 催化性模板製備27 2.2.3 利用催化性模板製備各種幾何形狀的聚電解質薄膜28 2.2.4 利用催化性模板對聚電解質薄膜進行二次壓印28 2.2.5 轉移膠原蛋白至聚電解質薄膜29 2.3 結果與討論30 2.3.1 PDMS翻模結果30 2.3.2 一次壓印與二次壓印結果34 2.3.3 膠原蛋白轉印結果41 第三章 磷酸鈣礦化於不同幾何形狀之微奈米結構上45 3.1 實驗策略 45 3.2 實驗藥品與儀器46 3.2.1 實驗藥品46 3.2.2 實驗儀器47 3.3 實驗步驟47 3.3.1 矽晶圓清洗47 3.3.2 礦化溶液配置48 3.3.3 將具有微奈米結構之基板引入至礦化溶液48 3.4 結果與討論49 3.4.1 探討各種條件下之磷酸鈣形貌49 3.4.2 探討磷酸鈣成礦於不同基材上53 3.4.3 探討聚電解質薄膜之表面電荷對礦化之影響54 3.4.4 探討表面圖案化對礦化之影響56 3.4.5 膠原蛋白介面57 第四章 表面化學效應與矽烷自組裝之微奈米結構對磷酸鈣礦化之影響59 4.1 實驗策略59 4.2 實驗藥品與儀器60 4.2.1 實驗藥品60 4.2.2 實驗儀器61 4.3 實驗步驟 61 4.3.1 基材清洗61 4.3.2 PDMS模板製備61 4.3.3 製備微奈米結構的矽烷表面61 4.3.4 水接觸角量測與分析62 4.4 結果與討論63 4.4.1 以氣相沉積法製備之矽烷微奈米結構63 4.4.2 探討表面化學效應對磷酸鈣礦化之影響67 4.4.3 以矽烷自組裝之微奈米結構對於礦化之影響70 第五章 結論與未來方向74 5.1 結論74 5.2 未來方向74 參考文獻75

    1. Dauphin, Y. A brief history of biomineralization studies. ACS Biomater Sci. Eng. 2023, 9, 1774-1790.
    2. Mann, S. Molecular recognition in biomineralization. Nature 1988, 332, 119-124.
    3. Weiner, S. Biomineralization: A structural perspective. J. Struct. Biol. 2008, 163, 229-234.
    4. Kharissova, O. V.; Méndez, Y. P.; Kharisov, B. I.; Nikolaev, A. L.; Dorozhkin, S. V.; Mena, D. N.; García, B. O. Biomineralization of calcium phosphates in nature. NNO or Nano-S&O. 2025, 41, 101425.
    5. Termine, J. D.; Belcourt, A. B.; Conn, K. M.; Kleinman, H. K. Mineral and collagen-binding proteins of fetal calf bone. J. Biol. Chem. 1981, 256, 10403-10408.
    6. Zhang, C.; Li, F.; Lyu, J.; Yao, Y. Biomimetic mineralization of Ca-Mg carbonates: relevance to microbial cells and extracellular polymeric substances. Microsc. Microanal. 2023, 29, 665-674.
    7. Hojo, M.; Omi, A.; Hamanaka, G.; Shindo, K.; Shimada, A.; Kondo, M.; Narita, T.; Kiyomoto, M.; Katsuyama, Y.; Ohnishi, Y.; et al. Unexpected link between polyketide synthase and calcium carbonate biomineralization. Zool. Lett. 2015, 1, 3.
    8. Wu, K.-J.; Edmund, C.; Shang, C.; Guo, Z. Nucleation and growth in solution synthesis of nanostructures–from fundamentals to advanced applications. Prog. Mater. Sci. 2022, 123, 100821.
    9. Erdemir, D.; Lee, A. Y.; Myerson, A. S. Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 2009, 42, 621-629.
    10. Hamilton, B. D.; Ha, J.-M.; Hillmyer, M. A.; Ward, M. D. Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers. Acc. Chem. Res. 2012, 45, 414-423.
    11. Naik, A. N.; Patra, S.; Sen, D.; Goswami, A. Evaluating the mechanism of nucleation and growth of silver nanoparticles in a polymer membrane under continuous precursor supply: tuning of multiple to single nucleation pathway. Phys. Chem. Chem. Phys. 2019, 21, 4193-4199.
    12. Fornaro, L.; Ferreira, D.; Pereira, H. B.; Olivera, A. Pre-nucleation and particle attachment of bismuth tri-iodide onto graphene substrates. J. Cryst. Growth 2020, 533, 125454.
    13. Li, J.; Li, Y.; Li, Q.; Wang, Z.; Deepak, F. L. Atomic-scale dynamic observation reveals temperature-dependent multistep nucleation pathways in crystallization. Nanoscale Horiz. 2019, 4, 1302-1309.
    14. Wolde, P. R. t.; Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 1997, 277, 1975-1978.
    15. Myerson, A. S.; Trout, B. L. Nucleation from solution. Science 2013, 341, 855-856.
    16. Wolf, S. E.; Leiterer, J.; Kappl, M.; Emmerling, F.; Tremel, W. Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets. J. Am. Chem. Soc. 2008, 130, 12342-12347.
    17. Wolf, S. E.; Müller, L.; Barrea, R.; Kampf, C. J.; Leiterer, J.; Panne, U.; Hoffmann, T.; Emmerling, F.; Tremel, W. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates. Nanoscale 2011, 3, 1158-1165.
    18. Wallace, A. F.; Hedges, L. O.; Fernandez-Martinez, A.; Raiteri, P.; Gale, J. D.; Waychunas, G. A.; Whitelam, S.; Banfield, J. F.; De Yoreo, J. J. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 2013, 341, 885-889.
    19. Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. U. S. A 2004, 101, 12096-12101.
    20. Horn, D.; Rieger, J. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew. Chem. Int. Ed. 2001, 40, 4330-4361.
    21. Gebauer, D.; Volkel, A.; Colfen, H. Stable prenucleation calcium carbonate clusters. Science 2008, 322, 1819-1822.
    22. Talham, D. R. Biomineralization: principles and concepts in bioinorganic materials chemistry Stephen Mann. Oxford University Press, New York, 2001. ACS Publications: 2002.
    23. Gupta, P.; Adhikary, M.; Kumar, M.; Bhardwaj, N.; Mandal, B. B. Biomimetic, osteoconductive non-mulberry silk fiber reinforced tricomposite scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 30797-30810.
    24. Chang, R.; Liu, Y. J.; Zhang, Y. L.; Zhang, S. Y.; Han, B. B.; Chen, F.; Chen, Y. X. Phosphorylated and phosphonated low‐complexity protein segments for biomimetic mineralization and repair of tooth enamel. Adv. Sci. 2022, 9, 2103829.
    25. Quade, M.; Münch, P.; Lode, A.; Duin, S.; Vater, C.; Gabrielyan, A.; Rösen‐Wolff, A.; Gelinsky, M. The secretome of hypoxia conditioned hMSC loaded in a central depot induces chemotaxis and angiogenesis in a biomimetic mineralized collagen bone replacement material. Adv. Healthc. Mater. 2020, 9, 1901426.
    26. Dong, L.; Ding, J.; Zhu, L.; Liu, Y.; Gao, X.; Zhou, W. Copper carbonate nanoparticles as an effective biomineralized carrier to load macromolecular drugs for multimodal therapy. Chin. J. Chem. 2023, 34, 108192.
    27. Tang, N.; Li, H.; Zhang, L.; Zhang, X.; Chen, Y.; Shou, H.; Feng, S.; Chen, X.; Luo, Y.; Tang, R. A macromolecular drug for cancer therapy via extracellular calcification. Angew. Chem. Int. Ed. 2021, 60, 6509-6517.
    28. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.
    29. Kumari, D.; Qian, X.-Y.; Pan, X.; Achal, V.; Li, Q.; Gadd, G. M. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv. Appl. Microbiol. 2016, 94, 79-108.
    30. Ma, L.; Sun, Y.; Cheng, Q.; Yang, Z.; Wang, J.; Xu, Z.; Yang, M.; Shuai, Y. Silk protein-mediated biomineralization: from bioinspired strategies and advanced functions to biomedical applications. ACS Appl. Mater. Interfaces 2023, 15, 33191-33206.
    31. Sato, K. Mechanism of hydroxyapatite mineralization in biological systems. J. Ceram. Soc. Jpn. 2007, 115, 124-130.
    32. Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321-330.
    33. Malmberg, P.; Nygren, H. Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF‐SIMS). Proteom. 2008, 8, 3755-3762.
    34. Batchelar, D. L.; Davidson, M. T.; Dabrowski, W.; Cunningham, I. A. Bone‐composition imaging using coherent‐scatter computed tomography: Assessing bone health beyond bone mineral density. Med. Phys. 2006, 33, 904-915.
    35. Sadat-Shojai, M.; Khorasani, M.-T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013, 9, 7591-7621.
    36. Pu'ad, N. M.; Haq, R. A.; Noh, H. M.; Abdullah, H.; Idris, M.; Lee, T. Synthesis method of hydroxyapatite: A review. Mater. Today: Proc. 2020, 29, 233-239.
    37. Cox, S. C.; Walton, R. I.; Mallick, K. K. Comparison of techniques for the synthesis of hydroxyapatite. Bioinspired Biomim. 2015, 4, 37-47.
    38. Achar, T. K.; Bose, A.; Mal, P. Mechanochemical synthesis of small organic molecules. Beilstein J. Org. Chem. 2017, 13, 1907-1931.
    39. Yeong, K.; Wang, J.; Ng, S. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 2001, 22, 2705-2712.
    40. Zhang, G.; Chen, J.; Yang, S.; Yu, Q.; Wang, Z.; Zhang, Q. Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method. Mater. Lett. 2011, 65, 572-574.
    41. Nakahira, A.; Sakamoto, K.; Yamaguchi, S.; Kaneno, M.; Takeda, S.; Okazaki, M. Novel synthesis method of hydroxyapatite whiskers by hydrolysis of alpha‐tricalcium phosphate in mixtures of water and organic solvent. J. Am. Ceram. Soc. 1999, 82, 2029-2032.
    42. Itatani, K.; Tsugawa, T.; Umeda, T.; Musha, Y.; Davies, I. J.; Koda, S. Preparation of submicrometer-sized porous spherical hydroxyapatite agglomerates by ultrasonic spray pyrolysis technique. J. Ceram. Soc. Jpn. 2010, 118, 462-466.
    43. Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930.
    44. Martin, Y.; Williams, C. C.; Wickramasinghe, H. K. Atomic force microscope–force mapping and profiling on a sub 100‐Å scale. J. Appl. Phys. 1987, 61, 4723-4729.
    45. Hansma, P.; Cleveland, J.; Radmacher, M.; Walters, D.; Hillner, P.; Bezanilla, M.; Fritz, M.; Vie, D.; Hansma, H.; Prater, C. Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 1994, 64, 1738-1740.
    46. Putman, C. A.; Van der Werf, K. O.; De Grooth, B. G.; Van Hulst, N. F.; Greve, J. Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 1994, 64, 2454-2456.
    47. Marton, L. The electron microscope: A new tool for bacteriological research. J. Bacteriol. 1941, 41, 397-413.
    48. Zhou, W.; Apkarian, R.; Wang, Z. L.; Joy, D. Fundamentals of scanning electron microscopy (SEM). Scanning Microsc. 2007, 1-40.
    49. Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning electron microscopy: Principle and applications in nanomaterials characterization; Springer, 2018.
    50. Okano, Y. Scanning electron microscopy. In Compendium of surface and interface analysis, The Surface Science Society of, J. Ed.; Springer Singapore, 2018; pp 563-569.
    51. Yu, L.; Wei, M. Biomineralization of collagen-based materials for hard tissue repair. Int. J. Mol. Sci. 2021, 22, 944.
    52. Li, Y.; Rodriguez-Cabello, J. C.; Aparicio, C. Intrafibrillar mineralization of self-assembled elastin-like recombinamer fibrils. ACS Appl. Mater. Interfaces 2017, 9, 5838-5846.
    53. Ibsen, C. J. S.; Gebauer, D.; Birkedal, H. Osteopontin stabilizes metastable states prior to nucleation during apatite formation. Chem. Mat. 2016, 28, 8550-8555.
    54. Zhao, W.; Wang, Z.; Xu, Z.; Sahai, N. Osteocalcin facilitates calcium phosphate ion complex growth as revealed by free energy calculation. Phys. Chem. Chem. Phys. 2018, 20, 13047-13056.
    55. He, G.; Gajjeraman, S.; Schultz, D.; Cookson, D.; Qin, C.; Butler, W. T.; Hao, J.; George, A. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution. Biochemistry 2005, 44, 16140-16148.
    56. Zeiger, D. N.; Miles, W. C.; Eidelman, N.; Lin-Gibson, S. Cooperative calcium phosphate nucleation within collagen fibrils. Langmuir 2011, 27, 8263-8268.
    57. Olszta, M.; Douglas, E.; Gower, L. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif. Tissue Int. 2003, 72, 583-591.
    58. Shao, C.; Zhao, R.; Jiang, S.; Yao, S.; Wu, Z.; Jin, B.; Yang, Y.; Pan, H.; Tang, R. Citrate improves collagen mineralization via interface wetting: a physicochemical understanding of biomineralization control. Adv. Mater. 2018, 30, 1704876.
    59. Hu, C.; Zhang, L.; Wei, M. Development of biomimetic scaffolds with both intrafibrillar and extrafibrillar mineralization. ACS Biomater Sci. Eng. 2015, 1, 669-676.
    60. Costello, L. C.; Chellaiah, M. A.; Zou, J.; Reynolds, M. A.; Franklin, R. B. In vitro BMP2 stimulation of osteoblast citrate production in concert with mineralized bone nodule formation. J. Regen. Med. Tissue Eng. 2015, 4, 2.
    61. Marković, M.; Fowler, B. O.; Brown, W. E. Octacalcium phosphate carboxylates: IV. Kinetics of formation and solubility of octacalcium phosphate succinate. J. Cryst. Growth 1994, 135, 533-538.
    62. Fleisch, H.; Bisaz, S. Mechanism of calcification: inhibitory role of pyrophosphate. Nature 1962, 195, 911-911.
    63. Thouverey, C.; Bechkoff, G.; Pikula, S.; Buchet, R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthr. Cartil. 2009, 17, 64-72.
    64. Kim, D.; Lee, B.; Thomopoulos, S.; Jun, Y.-S. In situ evaluation of calcium phosphate nucleation kinetics and pathways during intra-and extrafibrillar mineralization of collagen matrices. Cryst. Growth Des. 2016, 16, 5359-5366.
    65. Kim, D.; Lee, B.; Thomopoulos, S.; Jun, Y.-S. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nat. Commun. 2018, 9, 962.
    66. Cantaert, B.; Beniash, E.; Meldrum, F. C. Nanoscale confinement controls the crystallization of calcium phosphate: relevance to bone formation. Chem. Eur. J. 2013, 19, 14918-14924.
    67. Indurkar, A.; Choudhary, R.; Rubenis, K.; Locs, J. Role of carboxylic organic molecules in interfibrillar collagen mineralization. Front. bioeng. biotechnol. 2023, 11, 1150037.
    68. Quan, B. D.; Sone, E. D. Cryo-TEM analysis of collagen fibrillar structure. In Methods in enzymology, Vol. 532; Elsevier, 2013; pp 189-205.
    69. Zhu, P.; Masuda, Y.; Koumoto, K. The effect of surface charge on hydroxyapatite nucleation. Biomaterials 2004, 25, 3915-3921.
    70. Peaker, A.; Czernuszka, J. The effect of electric field on the formation of hydroxyapatite coatings. Thin Solid Films. 1996, 287, 174-183.
    71. Sato, K.; Kumagai, Y.; Tanaka, J. Apatite formation on organic monolayers in simulated body environment. J. Biomed. Mater. Res. 2000, 50, 16-20.
    72. Tanahashi, M.; Matsuda, T. Surface functional group dependence on apatite formation on self‐assembled monolayers in a simulated body fluid. J. Biomed. Mater. Res. 1997, 34, 305-315.
    73. Robin, M.; Tovani, C. B.; Krafft, J.-M.; Costentin, G.; Azaïs, T.; Nassif, N. The concentration of bone-related organic additives drives the pathway of apatite formation. Cryst. Growth Des. 2021, 21, 3994-4004.
    74. Maas, M.; Guo, P.; Keeney, M.; Yang, F.; Hsu, T. M.; Fuller, G. G.; Martin, C. R.; Zare, R. N. Preparation of mineralized nanofibers: collagen fibrils containing calcium phosphate. Nano Lett. 2011, 11, 1383-1388.

    無法下載圖示 校內:2030-06-17公開
    校外:2030-06-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE