| 研究生: |
王佩如 Wang, Pei-Ju |
|---|---|
| 論文名稱: |
鏈球菌熱原性外毒素B 多型性及突變株的特性之研究 Characterization of Mutant and Polymorphic Forms of Streptococcal Pyrogenic Exotoxin B |
| 指導教授: |
莊偉哲
Chuang, woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 鏈球菌熱原性外毒素B |
| 外文關鍵詞: | Streptococcal Pyrogenic Exotoxin B |
| 相關次數: | 點閱:40 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鏈球菌熱原性外毒素B (Streptococcal pyrogenic exotoxin B ,簡稱SPE B),它是由化膿性鏈球菌 ( Streptococcus pyogenes ) 所產生的一種細胞外毒素,根據其催化區的分類,將它歸屬於半胱胺酸蛋白酶(cysteine protease)的一種。SPEB 是以40kDa 的酶原 ( Zymogen , ProSPEB ) 形式被鏈球菌分泌至細胞外,之後會經由自動催化 (autocatalysis) 或是經由其他蛋白酶活化形成28 kDa 具有活性之蛋白酶。過去對於SPE B 的研究中指出:在感染宿主時,SPE B 對於化膿性鏈球菌佔有重要的角色,它不僅可以分解細胞間質主要成份 fibronectin 及vitronectin,作用於interleukin-1β (IL-1β) precursor 並產生活化型的 IL-1β而加重發炎反應,誘導吞噬細胞凋亡及降低其吞噬能力等,故SPE B 被認為是化膿性鏈球菌的重要毒性因子而成為極具吸引力的治療標的。研究發現SPE B 的活化中心為半胱胺酸(Cysteine)及組胺酸 (Histidine),為了深入瞭解SPE B 酵素催化的反應機制,我們利用定點突變的方法構築五株突變株,分別為Q162N (推測與穩定過渡態有關)、W359A (推測位於活化區)、以及W357A、G281A 和V334A (推測與受質結合有關)。另外我們在比對SPE B 胺基酸序列時發現SPE
B 在化膿性鏈球菌中具有多型性。為了瞭解這些多型性的SPE B 在化膿性鏈球菌感染宿主過程中所扮演的角色,我們利用同樣的方法構築T137I、D154N、G308S、G308S/A317S、G384D 五株突變利用大腸桿菌系統表現蛋白及純化,在純化的過程中加入1.5mM 氯化汞以維持其酶原的形式和抑制其活性。在我們的研究中Q162N、W359A 活性和SPE B 相較之下,活性變的非常弱,顯示他們對SPE B 的催化是非常重要的。而Q162N、G281A、V334A 、W357A、W359A 它們切特異性受質C192S 時,發現和原來SPE B 切C192S 的形態不同,顯示它們與受質的結合有關。在多型性方面, 除了G384D 外,其它多型性的SPE B 是影響酵素活性而不改變其受質特異性,詳細的原因到現在還不清楚。而在G384D 切C192S 時,我們發現它的酵素活性降低大約只有SPE B 的二十分之一,且中間產物幾乎都看不見了,和SPE B 切C192S 有八個中間物的結果有顯著的差別。顯示位於C 端loop 上的G384D 也會影響酵素活性和受質特異性,這個結果和我們實驗室在NMR 的結果是符合的。我們依據切割C192S的速率來排列SPE B 及其突變株的相對活性,依序如下: SPEB ~ G308S > T137I > D154N > G308S/A317S > N356D > G384D > W357A > G281A > V334A >W359A > Q162N >> C192S, H340R.。綜合以上結果顯示SPE B 有六個區域:Y160-G163,T190-A196,S280-S286,G323-F342,W357-W359,和 A376-A391在催化活性和受質結合扮演重要角色,也讓我們了解SPE B 的分子作用機制和其多型性對功能上的影響。
Streptococcal pyrogenic exotoxin B (SPE B) is an extracellular cysteine protease which is secreted by Streptococcus pyogenes. SPE B is initially expressed as a 40kDa zymogen and subsequently converted to a 28 kDa active protease by autocatalysis or proteolysis. SPEB participates in the dissemination, colonization, and invasion of bacteria and the inhibition of wound healing. Many reports on SPEB infection reveal that the spe B gene is extremely polymorphic among strains of S. pyogenes. However, little is known about the relationships between the genetic variation of spe B and the diseases made by S. pyogenes. In order to investigate the polymorphism and enzyme mechanism, SPEB and its mutants werw expressed in E. coli system and purified to homogeneity. The Q162, G281/V334/W357, and W359 residues were involved in stabilization state, substrate binding, and active site, respectively. The mutants of Q162N, G281A, V334A, W357A, and W359A almost lost their protease activity, implicating that these residues are essential for the catalytic activity. The polymorphic mutants T137I, D154N, G308S, and G308S/A317S have little effects on their protease activity. In contrast, the polymorphic mutation of G384 to D in the C-terminal loop caused a 20-fold decrease in activity. Our autocatalysis analysis showed that this low activity was due to a slow intermolecular processing of zymogen maturation. This result is consistent with our NMR data that the G384 residue plays an important role in substrate binding. The relative protease activity of these mutants exhibit in the following order: SPEB ~ G308S > T137I > D154N > G308S/A317S > N356D > G384D > W357A > G281A > V334A > W359A > Q162N >> C192S, H340R. Taken together, residues of six regions, including Y160-G163, T190-A196, S280-S286, G323-F342, W357-W359, and A376-A391, of SPE B may play important roles in both catalytic catalysis and substrate binding. This study will extend our understanding of the molecular mechanism and the polymorphic effect of SPE B on S. pyogenes infection.
Anderson, E. T., Winter, L. A., Fernsten, P., Olmsted, S. B. and Matsuka, Y. V. The pro-sequence domain of streptopain directs the folding of the mature enzyme. Arch. Biochem. Biophys. 436: 297-306, 2005.
Berge, A. and Bjorck, L. Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins. J. Biol. Chem. 270: 9862-9867, 1995.
Bhakdi, S., Roth, M., Sziegoleit, A., and Tranum-Jensen, J. Isolation of two hemolytic forms of streptolysin O. Infect. Immun. 46: 394-400, 1984.
Burns, E. H. Jr., Marciel, A. M. and Musser, J. M. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease. Infect. Immun. 64: 4744-4750, 1996.
Chen, C. Y., Luo, S. C., Kuo, C. H., Lin, Y. S., Wu, J. J., Lin, M. T., Liu, C. C., Jeng, W. Y. and Chuang, W. J. Maturation processing and characterization of streptopain. J. Biol. Chem. 278: 17336-17343, 2003.
Collin, M. and Olsen, A. Extracellular enzymes with immunomodulating activities: variations on a theme in Streptococcus pyogenes. Infect. Immun. 71: 2983-2992, 2003.
D’Costa, S. S. and Boyle, M. D. Interaction of a group A streptococcus within human plasma results in assembly of a surface plasminogen activator that contributes to occupancy of surface plasmin-binding structures. Microb. Pathog. 24: 341-349, 1998.
DeAngelis, P. L., Yang, N. and Weigel, P. H. The Streptococcus Pyogenes hyaluronidase synthetase: sequence comparison and conservation among various group A strains. Biochem. Biophy. Res. Commun. 199: 1-10, 1994.
Dale, J. B, Washburn, R. G., Marques, M. B and Wessels, M. R. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect. Immun. 64: 1495-501, 1996.
Doran, J. D., Nomizu, M., Takebe, S., Menard, R., Griffith, D. and Ziomek, E.
Autocatalytic processing of the streptococcal cysteine protease zymogen: processing mechanism and characterization of the autoproteolytic cleavage sites. Eur. J. Biochem. 263: 145-151, 1999.
Elliot, S. D. The crystallization and serological differentiation of a streptococcal proteinase and its precursor. J. Exp. Med. 92: 201-218, 1950.
Gerlach, D., Knoll, H., Kohler, W., Ozegowski, J. H. and Hribalova, V. Isolation and characterization of erythrogenic toxins. V. Communication: identity of erythrogenic toxin type B and streptococcal proteinase precursor. Zentralbl. Bakteriol. Mikrobiol. Hyg. 255: 221-233, 1983.
Gubba, S., Cipriano, V. and Musser, J. M. Replacement of histidine 340 with alanine inactivates the group A Streptococcus extracellular cysteine protease virulence factor. Infect. Immun. 68: 3716-3719, 2000.
Hauser, A. R. and Schlievert, P. M. Nucleotide sequence of the streptococcal pyrogenic exotoxin type B gene and relationship between the toxin and the streptococcal proteinase precursor. J. Bacteriol. 172: 4536-4542, 1990.
Hauser, A. R., Stevens, D. L., Kaplan, E. L. and Schlievert, P. M. Molecular analysis of pyrogenic exotoxins from Streptococcus pyogenes isolates associated with toxic shock-like syndrome. J. Clin. Microbiol. 29: 1562-1567, 1991.
Herwald, H., Collin, M., Muller-Esterl, W. and Bjorck, L. Streptococcal cysteine proteinase releases kinins: a virulence mechanism. J. Exp. Med. 184: 665-673, 1996.
Holm, S. E., Norrby, A., Bergholm, A. M. and Norgren, M. Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988-1989. J. Infect. Dis. 166: 31-37, 1992.
Ji, Y., McLandsborough, L., Kondagunta, A. and Cleary, P. P. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect. Immun. 64: 503-510, 1996.
Johnson, D. R., Stevens, D. L. and Kaplan, E. L. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis. J. Infect. Dis. 166: 374-382, 1992.
Kagawa, T. F., Cooney, J. C., Baker, H. M., McSweeney, S., Liu, M., Gubba, S., Musser, J. M. and Baker, E. N. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease. Proc. Natl. Acad. Sci. U S A. 97: 2235-2240, 2000.
Kansal, R. G., McGeer, A., Low, D. E., Norrby-Teglund, A. and Kotb, M. Inverse relation between disease severity and expression of the streptococcal cysteine protease, SpeB, among clonal M1T1 isolates recovered from invasive group A streptococcal infection cases. Infect. Immun. 68: 6362-6369, 2000.
Kapur, V., Topouzis, S., Majeasky, M. W., Li, L. L., Hamrick, M. R., Hamill, R. J., Patti, J. M. and Musser, J. M. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15: 327-346, 1993a.
Kapur, V., Majeasky, M. W., Li, L. L., Black, R. A. and Musser, J. M. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA. 90: 7676-7680, 1993b.
Kapur, V., Maffei, J. T., Greer, R. S., Li, L. L., Adams, G. J. and Musser, J. M. Vaccination with streptococcal extracellular cysteine protease (interleukin-1 beta convertase) protects mice against challenge with heterologous group A streptococci. Microb. Pathog. 16: 443-450, 1994.
Kline, J. B. and Collins, C. M. Analysis of the superantigenic activity of mutant and allelic forms of streptococcal pyrogenic exotoxin A. Infect. Immun. 64: 861-869, 1996.
Kuo, C. F., Wu, J. J., Lin, K. Y., Tsai, P. J., Lee, S. C., Jin, Y. T., Lei, H. Y. and Lin, Y. S. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect Immun. 66: 3931-5, 1998.
Kuo, C. F., Wu, J. J., Tsai, P. J., Kao, F. J., Lei, H. Y., Lin, M. T. and Lin, Y. S. Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67: 126-130, 1999.
Liu, T. Y. and Elliott, S. D. Streptococcal protease: the zymogen to enzyme transformation. J. Biol. Chem. 240: 1138-1142, 1965.
Lukomski, S., Sreevatsan, S., Amberg, C., Reichardt, W., Woischnik, M., Podbielski, A. and Musser, J. M. Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains. J. Clin. Invest. 99: 2574-2580, 1997.
Lukomski, S., Montgomery, C. A., Rurangirwa, J., Geske, R. S., Barrish, J. P., Adams, G. J. and Musser, J. M. Extracellular cysteine protease produced by Streptococcus pyogenes participates in the pathogenesis of invasive skin infection and dissemination in mice. Infect. Immun. 67: 1779-1788, 1999.
Morita, M., Ikebe, T. and Watanabe, H. Consideration of cysteine protease activity for serological M-typing of clinical Streptococcus pyogenes isolates. Microbiol. Immunol. 48: 779-782, 2004.
Nagamune, H., Ohkura, K. and Ohkuni, H. Molecular basis of group A streptococcal pyrogenic exotoxin B. J. Infect. Chemother. 11: 1-8, 2005.
Nomizu, M., Pietrzynski, G., Kato, T., Lachance, P., Menard, R. and Ziomek, E. Substrate specificity of the Streptococcal cysteine protease. J. Biol. Chem. 276:44551-44556, 2001.
Ohara-Nemoto, Y., Sasaki, M., Kaneko, M., Nemoto, T. and Ota, M. Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can. J. Microbiol. 40:930-936, 1994.
Pinkney, M., Kapur, V., Smith, J., Weller, U., Palmer, M., Glanville, M., Messner, M., Musser, J. M., Bhakdi, S. and Kehoe, M. A. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli expressing recombinant toxin: cleavage by streptococcal cysteine protease. Infect. Immun. 63:2776-2779, 1995.
Peracchi, A. Enzyme catalysis: removing chemically ‘essential’ residues by site-directed mutagenesis. Trends Biochem. Sci. 26: 497-503, 2001.
Reid, S. D., Hoe, N. P., Smoot, L. M. and Musser, J. M. Group A Streptococcus: allelic variation, population genetics, and host-pathogen interactions. J. Clin. Invest. 107: 393-399, 2001.
Robinson, J. H. and Kehoe, M. A. Group A streptococcal M proteins: virulence factors and protective antigens. Immunol. Today 13: 362-367, 1992.
Rzychon, M., Chmiel, D. and Stec-Niemczyk, J. Modes of inhibition of cysteine proteases. Acta. Biochim. Pol. 51: 861-873, 2004.
Shanley, T. P., Schrier, D., Kapur, V., Kehoe, M., Musser, J. M. and Ward, P. A.
Streptococcal cysteine protease augments lung injury induced by products of group A streptococci. Infect. Immun. 64: 870-877, 1996.
Stockbauer, K. E., Magoun, L., Liu, M., Burns, E. H. Jr., Gubba, S., Renish, S., Pan,
X., Bodary, S. C., Baker, E., Coburn, J., Leong, J. M. and Musser, J. M. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3. Proc. Natl. Acad. Sci. U S A. 96: 242-247, 1999.
Stollerman, G. H. Changing group A streptococci. The reappearance of streptococcal 'toxic shock'. Arch. Intern. Med. 148: 1268-1270, 1988.
Tai, J. Y., Kortt, A. A., Liu, T. Y. and Elliott, S. D. Primary structure of streptococcal protease. III. Isolation of cyanogen bromide peptides: complete covalent structure of the polypeptide chain. J. Biol. Chem. 251: 1955-1959, 1976.
Tsai, P. J., Kuo, C. H., Lin, K. Y., Lin, Y. S., Lei, H. Y., Chen, F. F., Wang, J. R. and Wu, J. J. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect. Immun. 66: 1460-1466, 1998.
Tyrrell, G. J., Lovgren, M., Forwick, B., Hoe, N. P., Musser, J. M. and Talbot, J. A. M types of group A streptococcal isolates submitted to the National Centre for Streptococcus (Canada) from 1993 to 1999. J. Clin. Microbiol. 40: 4466-4471, 2002.
Vernet, T., Khouri, H. E., Laflamme, P., Tessier, D. C., Musil, R., Gour-Salin, B. J., Storer, A. C. and Thomas, D. Y. Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. J. Biol. Chem. 266: 21451-21457, 1991.
Villasenor-Sierra, A., McShan, W. M., Salmi, D., Kaplan, E. L., Johnson, D. R. and Stevens, D. L. Variable susceptibility to opsonophagocytosis of group A streptococcus M-1 strains by human immune sera. J. Infect. Dis. 180: 1921-1928, 1999.
Von Pawel-Rammingen, U. and Bjorck, L. IdeS and SpeB: immunoglobulindegrading cysteine proteinases of Streptococcus pyogenes. Curr. Opin. Microbiol. 6:50-55, 2003.
Yabuta, Y., Takagi, H., Inouye, M. and Shinde, U. Folding pathway mediated by an intramolecular chaperone: propeptide release modulates activation precision of pro-subtilisin. J. Biol. Chem. 276: 44427-44434, 2001.
Yamaoka, J., Nakamura, E., Takeda, Y., Imamura, S. and Minato, N. Mutational analysis of superantigen activity responsible for the induction of skin erythema by streptococcal pyrogenic exotoxin C. Infect. Immun. 66:5020-5026, 1998.
蔡佩珍 Pathogenic Mechanism of Group A Streptococcus Entry into Epithelial Cells: Emphasis on The Role of Streptococcal Pyrogenic Exotoxin B 國立成功大學基礎醫學研究所博士論文. 1999.
郭志峰 Role of Streptococcal Pyrogenic Exotoxin B in Streptococcus pyogenes
Infection. 國立成功大學基礎醫學研究所博士論文. 1999.
陳秋月 Expression and Characterization of Streptococcal Pyrogenic Exotoxin B. 國立成功大學生物化學研究所碩士論文. 1999.
廖如樺 Analysis of the Protease Activity of Mutant and Allelic forms of Streptococcal Cysteine Protease. 國立成功大學生物化學研究所碩士論文. 2003.
黃湘琦 Structure and Function Relationship of Wild-type and C47S Mutant of Streptococcal Pyrogenic Exotoxin B. 國立成功大學生物化學研究所碩士論文. 2004.