簡易檢索 / 詳目顯示

研究生: 曾吉生
Zeng, Ji-Sheng
論文名稱: 具複合式雙極板之PEMFC數值研究
Numerical Studies of PEMFC with Complex Bipolar Plate
指導教授: 洪振益
Hung, Chen-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 125
中文關鍵詞: 質子交換膜燃料電池數值模擬雙極板
外文關鍵詞: bipolar plate, Proton Exchange Membrane Fuel Cells (PEMFC), numerical simulation
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   散熱系統對質子交換膜燃料電池堆(PEMFC stacks)極為重要,因為散熱不佳將會造成整體或局部高溫導致質子交換膜缺水,這將會嚴重降低交換膜的質子傳遞能力與電池效能。複合式雙極板為一整合了冷卻流道和反應氣體流道的新式雙極板,其冷卻流道較一般外部散熱系統更接近電池反應區域,應能使質子交換膜燃料電池堆的操作溫度更穩定且均勻分佈。

      本文建立一具冷卻流道的三維非等溫數值模型,以進行複合式雙極板與傳統雙極板在溫度分布、氣體分布及電流密度的定性分析。由分析結果發現:複合式雙極板的land area過長將會使質子交換膜燃料電池堆的電流密度下降,且電池內還有局部高溫的現象。數值模擬顯示,這些問題可藉由縮短集電肋條與流道寬度獲得改善。此外,塑膠板厚度只會造成整體溫度的變化,對內部溫度分布趨勢並無明顯影響。本文將作為複合式雙極板數值分析的基礎,並為相關領域的研究人員提供參考文獻。

     The cooling system is very important in proton exchange membrane fuel cells (PEMFC) stacks. High global or local temperature due to inefficient cooling would cause membrane dehydration and it would severely decrease the membrane proton conductivity and cell performance. The complex bipolar plate is a new bipolar plate, which integrates the coolant channels and reactant channels on the same plate. The new bipolar plate would make cell temperature stable and temperature distribution uniformly, because its coolant channels are closer to the reaction region of PEMFC than the traditional cooling systems.

     In this study, a three-dimensional, non-isothermal model with cooling channels is developed to analyze the thermal field, species field, and current density for the complex bipolar plate and general (traditional) bipolar plate. The analysis shows that the land area of the new bipolar plate is too long which may reduce the cell performance. The analysis also shows that the high local temperature occurred inside the PEMFC stacks made with the complex bipolar plate. Numerical simulations reveal that these problems could be resolved by decreasing the thickness of electric ribs and the width of fluid channels. The thickness of plastic plate only affects the global temperature and has no obvious influence on the temperature distribution. This study is a foundation of numerical analysis for the complex bipolar plate and a reference for related researchers.

    目 錄 摘要..............................I ABSTRACT........................II 誌謝..............................III 目錄..............................IV 表目錄.............................VI 圖目錄.............................VII 符號說明............................XI 本文架構............................XVI Section   Title                         Page 第一章   導論.........................1 1-1   前言.........................1 1-2   燃料電池簡介.....................2 1-3   研究動機與目的....................5 1-4   文獻回顧.......................7 第二章   理論基礎.......................14 2-1   質子交換膜燃料電池簡介................14 2-2   基本假設.......................18 2-3   統御方程式......................19 2-4   邊界條件.......................26 2-5   物理模型.......................28 2-6   數值模型.......................29 第三章   數值方法.......................31 3-1   數值方法簡介.....................31 3-2   有限體積法......................32 3-2-1 統御方程式之離散...................32 3-2-2 速度與壓力之關聯性..................35 3-2-3 SIMPLEC演算法.................38 3-3   邊界條件處理.....................40 3-4   質子交換膜導電係數..................41 3-5   收斂標準.......................42 3-6   數值模擬測試.....................43 3-6-1 PEMFC數值模型(PEMFC-T).........43 3-6-2 邊界條件.......................43 3-6-3 PEMFC-T格點測試................44 3-6-4 結果與討論......................45 3-6-5 測試結論.......................47 3-7   格點測試.......................49 第四章   結果與討論......................50 4-1   數值模擬參數設定...................50 4-2   傳統PEMFC stacks分析...........51 4-3   使用複合式雙極板之PEMFC stacks分析....54 4-3-1 複合式雙極板設計參數.................54 4-3-2 使用複合式雙極板之PEMFC數值模型(TCBP)模型.54 4-3-3 TCBP原始模型(TCBP-O)分析.........54 4-3-4 TCBP設計參數探討.................58 第五章   結論與未來展望....................65 5-1   結論.........................65 5-2   未來展望.......................67 參考文獻.............................69

    1
    李瑛、玉林山,燃料電池,冶金工業出版社,pp. 6~9 (2000)。
    2
    顏宇欣,3C 用燃料電池介紹,工業材料雜誌,169期,pp. 142-145 (2001)。
    3
    K. Kordesch and G. Simader, “Fuel Cells and Their Applications” VCH, New York, pp. 1-8 (1996).
    4
    鄭煜騰、鄭耀宗,質子交換膜型燃料電池的製造技術,能源季刊,第二十七卷,第二期,p. 118 (1997)。
    5
    S. M. Senn, and D. Poulikakos, “Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrode fuel cells“, Journal of Power Source, Vol. 130, pp. 187-191 (2004).
    6
    H. Gregor, “Fuel cell technology handbook”, CRC press LLC, Chap. 4, pp.1-27 (2003).
    7
    A. Kazim, H. T. Liu and P. Forges “Modeling of performance of PEM fuel cells with conventional and interdigitated flow filed”, Journal of Applied Electrochemistry, Vol. 29, pp.1409-1416 (1999).
    8
    V. Gurau, H. Liu and S. Kakac, “Two-dimensional model for proton exchange membrane fuel cells”, AIChE Journal, Vol. 44, No.11, pp. 2410-2422 (1998).
    9
    G. Dagan, “Flow and transport in porous formations,” Springer-Verlag, New York (1989).
    10
    G. Dagan, “The generalization of Darcy’s law for non-uniform flows”, Water Resources Research, Vol. 15, pp. 1 (1979).
    11
    C. Marr and X. Li, “An engineering model of proton exchange membrane fuel cell performance,” ARI, Vol. 50, Issue 4, pp.190-200 (1998).
    12
    C. Marr and X. Li, “Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell,” Journal of Power Sources, Vol. 77, Issue 1, pp. 17-27, (1999).
    13
    J. J. Baschuk and X. Li, “Modeling of polymer electrolyte membrane fuel cells with variable degree of water flooding,” Journal of Power Sources, Vol. 86, Issue 1-2, pp.181-196 (2000).
    14
    A. Rowe and X. Li, ”Mathematical modeling of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 102, Issue 1-2 pp. 82-96 (2001).
    15
    S. Um, C. Y. Wang, and K. S. Chen, “Computational fluid dynamics modeling of proton exchange membrane fuel cells”, Journal of The Electrochemical Society, Vol. 147, Issue 12, pp. 4485-4493 (2000).
    16
    E. A. Ticianelli, C. R. Derouin, and S. Srinivasan, “Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells”, Journal of Electroanalytical Chemistry, Vol. 251, pp. 275-295 (1988).
    17
    S. Dutta, S. Shimpalee, and JW Van Zee, “Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell”, International Journal of Heat and Mass Transfer, Vol. 44, pp. 2029-2042 (2001).
    18
    S. Shimpalee and S. Dutta, “Numerical prediction of temperature distribution in PEM fuel cells”, Numerical Heat Transfer, Part A, Vol. 38, pp. 111-128 (2000).
    19
    T. Berning, D. M. Lu and N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell”, Journal of Power Sources, Vol. 106, Issue 1-2 pp.284-294 (2002)
    20
    N. Djilali, and D. M. Lu, “Influence of heat transfer on gas and water transport in the fuel cells”, International Journal of Thermal Science, Vol. 41, Issue 1, pp. 29-40 (2002).
    21
    P. W. Li, T. Zhang, Q. M. Wang, L. Schaefer and M. K. Chyu, “The performance of PEM fuel cells fed with oxygen through the free-convection mode”, Journal of Power Sources, Vol. 114, Issue 1, pp. 63-69 (2003).
    22
    S. Mazumder and J. V. Cole, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells I. Model Predictions without Liquid Water Transport”, Journal of The Electrochemical Society, Vol. 150, Issue 11, pp. A1503-A1509 (2003).
    23
    S. Mazumder and J. V. Cole, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells II. Model Predictions with Liquid Water Transport”, Journal of The Electrochemical Society, Vol. 150, Issue 11, pp. A1510-A1517 (2003).
    24
    N. P. Siegel, M. W. Ellis, D. J. Nelson, and M. R. von Spakovsky, “A two-dimensional computational model of a PEMFC with liquid transport”, Journal of Power Source, Vol. 128, pp. 173-184 (2004).
    25
    林晏正,洪振益,鄭錕燦,質子交換膜燃料電池燃料流道入出口幾何設計與流場分析,國立成功大學機械工程學系碩士論文 (2003)。
    26
    K. Kordesch and G. Simader, “Fuel Cells and Their Applications” VCH, New York, pp.32-38 (1996).
    27
    U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, “Fuel Cell Handbook(Fifth Edition)”, EG&G Services Parsons, Inc., pp. 2-4~2-8 (2000).
    28
    CFD Research Corporation, “CFD-ACE(U) User Manual”, CFD-ACE(U) Webhelp 5.10, 2003
    29
    J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows”, Numerical Heat Transfer, Vol. 7 147-163, 1984.
    30
    T. E. Springer, T. A. Zawodinski, and S. Gottesfeld, “Polymer electrolyte fuel cell model”, Journal of The Electrochemical Society, Vol. 138, pp. 2334-2341 (1991).
    31
    H. Ju, H. Meng, and C. Y. Wang, “A single-phase, non-isothermal model for PEM fuel cells”, International Journal of Heat and Mass Transfer, Vol. 48, pp. 1303-1315 (2005).
    32
    S. Shimpalee, S. Greenway, D. Spuckler, and J.W. Van Zee, “Predicting water and current distributions in a commercial-size PEMFC”, Journal of Power Sources, Vol. 135, pp3 79-87 (2004).
    33
    P. T. Nguyen, T. Berning, and N. Djilali, “Computional model of a PEM fuel cell with serpentine gas flow channels”, Journal of Power Sources, Vol. 130, pp. 149-157 (2004).

    下載圖示 校內:2007-06-23公開
    校外:2007-06-23公開
    QR CODE