| 研究生: |
李雅惠 Li, Ya-Hui |
|---|---|
| 論文名稱: |
釀酒酵母的聚集表型對環境適應性的影響 Aggregation phenotype to environmental adaptability in Saccharomyces cerevisiae |
| 指導教授: |
宋皇模
Sung, Huang-Mo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | AMN1基因 、聚集表型 、鏈狀聚集現象 、釀酒酵母 |
| 外文關鍵詞: | AMN1 gene, aggregation, chain-forming, Saccharomyces cerevisiae |
| 相關次數: | 點閱:81 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
釀酒酵母(Saccharomyces cerevisiae)為單細胞的生物,但後來發現部分的釀酒酵母會呈現聚集生長,像是在釀酒工業中會因為發酵後期發酵槽的醣源不足而促使細胞在細胞膜上分泌絮凝劑(flocculant),促使細胞跟細胞之間產生表面黏附力而聚集,這個現象被稱之為絮凝現象(flocculation),目前研究大多證實絮凝現象能夠提高釀酒酵母的環境適應力,像是提供營養分配作用、抗逆境性等。但除了絮凝以外,還有另外一種聚集是釀酒酵母在出芽生殖時,由於子母細胞進行染色質分離時初級的幾丁質隔膜沒有正常分解而造成子細胞持續依附在母細胞上,最終形成聚集體,這種聚集被命名為鏈狀聚集現象(Chain-formation),但奇特的是鏈狀聚集不同於絮凝現象,目前只被發現在單套體釀酒酵母中,在雙套體釀酒酵母並不會出現,因此,本篇研究的主題是希望能探討鏈狀聚集現象對於釀酒酵母單套體的意義為何?是否和絮凝現象一樣是為了增加對環境適應力,或者是其他的因素?而我為了確認鏈狀聚集是否和釀酒酵母的環境適應力有關,首先,我統整了關於野生型釀酒酵母RM11與RM11-1a的基因表現量差異的文獻,找出造成兩者不同表型的關鍵基因-AMN1基因,並利用基因工程的技術調控細胞內AMN1基因表現量,成功的製造出不聚集的野生型單套體突變株與具有聚集表型的雙套體釀酒酵母菌株,而後,我將聚集與不聚集的酵母菌兩兩分組,並藉由共培養在營養環境、6%乙醇環境與38oC熱環境下比較兩者之間生存競爭能力的差異,結果證實不論在怎樣的環境下,野生型雙套體中不聚集的RM11都比聚集的突變株RM11/pTEF AMN1具有更佳的環境適應力,而野生型單套體則相反,聚集的RM11-1a比不聚集的突變株RM11-1a/ΔAMN1具有更佳的環境適應力,因此單套體呈聚集表型,雙套體呈非聚集表型的原因不僅僅是為了因應環境需求,單套體的聚集可能是為了在環境中進行性別轉變後更快速的進行交配,重新回到雙套體世代,而雙套體世代因為不需要進行這個,所以皆為非聚集生長,而本篇的研究證明了釀酒酵母的鏈狀聚集是受到分子機制所調控的,但並非如同絮凝現象主要是因為受到環境因素,更有可能是為了讓單套體的釀酒酵母重新回到較穩定的雙套體世代。
Saccharomyces cerevisiae is a single cell organism. However, it is frequently observed that yeast cells tend to clump together into the aggregation phenotype. The most common type of yeast aggregation is flocculation. It is a reversible cell-cell aggregation phenomenon, and caused by the interaction between specific flocculation proteins of cell surface. Other than flocculation, chain-forming is another aggregation phenotype. It is due to the failure of separation between mother cells and daughter cells, and is regulated by AMN1 genes. In our laboratory, it is observed that the chain-forming aggregation phenotype only occurs in haploid yeast cells but not in diploid yeast cells. However, flocculation phenomenon occurs in both haploid and diploid yeast cells. In order to explore this issue, I tested the fitness effect of the aggregation phenotype in haploid and in diploid yeast cells to check whether aggregation phenomenon affect the yeast adaption. My data showed that the aggregation phenotype increases the fitness of haploid cells under several environmental conditions but not for the diploid cells. Therefore, I concluded that the haploid yeast cells need the aggregation phenotype but not the diploid yeast cells, and it is not subject to environment.
Aguilera, F., R. A. Peinado, C. Millan, J. M. Ortega and J. C. Mauricio (2006). "Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains." International Journal of Food Microbiology 110(1): 34-42.
Bardin, A. J., R. Visintin and A. Amon (2000). "A mechanism for coupling exit from mitosis to partitioning of the nucleus." Cell 102(1): 21-31.
Beauvais, A., C. Loussert, M. C. Prevost, K. Verstrepen and J. P. Latge (2009). "Characterization of a biofilm-like extracellular matrix in FLO1-expressing Saccharomyces cerevisiae cells." FEMS Yeast Research 9(3): 411-419.
Bessho, K., Y. Iwasa and T. Day (2015). "The evolutionary advantage of haploid versus diploid microbes in nutrient-poor environments." Journal of Theoretical Biology 383: 116-129.
Bidlingmaier, S., E. L. Weiss, C. Seidel, D. G. Drubin and M. Snyder (2001). "The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae." Molecular and Cellular Biology 21(7): 2449-2462.
Brem, R. B., G. Yvert, R. Clinton and L. Kruglyak (2002). "Genetic dissection of transcriptional regulation in budding yeast." Science 296(5568): 752-755.
Cap, M., L. Vachova and Z. Palkova (2012). "Reactive oxygen species in the signaling and adaptation of multicellular microbial communities." Oxid Med Cell Longev 2012: 976753.
Casalone, E., C. Barberio, L. Cappellini and M. Polsinelli (2005). "Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology." Res Microbiol 156(2): 191-200.
Chen, E. H., E. Grote, W. Mohler and A. Vignery (2007). "Cell-cell fusion." FEBS Letters 581(11): 2181-2193.
Claro, F. B., K. Rijsbrack and E. V. Soares (2007). "Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress." Journal of Applied Microbiology 102(3): 693-700.
Cosma, M. P. (2004). "Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander." Embo Reports 5(10): 953-957.
Dashko, S., N. Zhou, C. Compagno and J. Piškur (2014). "Why, when, and how did yeast evolve alcoholic fermentation?" FEMS Yeast Res 14(6): 826-832.
Duina, A. A., M. E. Miller and J. B. Keeney (2014). "Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System." Genetics 197(1): 33-48.
Fang, O., X. H. Hu, L. Wang, N. Jiang, J. X. Yang, B. Li and Z. W. Luo (2018). "Amn1 governs post-mitotic cell separation in Saccharomyces cerevisiae." Plos Genetics 14(10): 20.
Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin and S. G. Oliver (1996). "Life with 6000 genes." Science 274(5287): 546-&.
Haber, J. E. (2012). "Mating-type genes and MAT switching in Saccharomyces cerevisiae." Genetics 191(1): 33-64.
Hadjivasiliou, Z., A. Pomiankowski and B. Kuijper (2016). "The evolution of mating type switching." Evolution 70(7): 1569-1581.
Harari, Y., Y. Ram, N. Rappoport, L. Hadany and M. Kupiec (2018). "Spontaneous Changes in Ploidy Are Common in Yeast." Current Biology 28(6): 825-+.
Jarolim, S., A. Ayer, B. Pillay, A. C. Gee, A. Phrakaysone, G. G. Perrone, M. Breitenbach and I. W. Dawes (2013). "Saccharomyces cerevisiae genes involved in survival of heat shock." G3: Genes, Genomes, Genetics 3(12): 2321-2333.
Kuranda, M. J. and P. W. Robbins (1991). "Chitinase is required for cell-separation during growth of Saccharomyces-cerevisiae." Journal of Biological Chemistry 266(29): 19758-19767.
Kuzdzal-Fick, J. J., L. Chen and G. Balazsi (2019). "Disadvantages and benefits of evolved unicellularity versus multicellularity in budding yeast." Ecology and Evolution 9(15): 8509-8523.
Lesage, G. and H. Bussey (2006). "Cell wall assembly in Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 70(2): 317-+.
Liu, H. P., C. A. Styles and G. R. Fink (1996). "Saccharomyces cerevisiae S288C has a mutation in FL08 a gene required for filamentous growth." Genetics 144(3): 967-978.
Ma, M. G. and Z. L. Liu (2010). "Mechanisms of ethanol tolerance in Saccharomyces cerevisiae." Applied Microbiology and Biotechnology 87(3): 829-845.
Munna, M. S., S. Humayun and R. Noor (2015). "Influence of heat shock and osmotic stresses on the growth and viability of Saccharomyces cerevisiae SUBSC01." BMC research notes 8(1): 369.
Nishant, K. T., W. Wei, E. Mancera, J. L. Argueso, A. Schlattl, N. Delhomme, X. Ma, C. D. Bustamante, J. O. Korbel, Z. L. Gu, L. M. Steinmetz and E. Alani (2010). "The Baker's Yeast Diploid Genome Is Remarkably Stable in Vegetative Growth and Meiosis." Plos Genetics 6(9): 15.
Nishihara, H., T. Toraya and S. Fukui (1982). "Flocculation of cell walls of brewer's yeast and effects of metal ions, protein-denaturants and enzyme treatments." Archives of Microbiology 131(2): 112-115.
Oleksiak, M. F., G. A. Churchill and D. L. Crawford (2002). "Variation in gene expression within and among natural populations." Nat Genet 32(2): 261-266.
Otto, S. P. and A. C. Gerstein (2008). "The evolution of haploidy and diploidy." Current Biology 18(24): R1121-R1124.
Oud, B., V. Guadalupe-Medina, J. F. Nijkamp, D. de Ridder, J. T. Pronk, A. J. A. van Maris and J. M. Daran (2013). "Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae." Proceedings of the National Academy of Sciences of the United States of America 110(45): E4223-E4231.
Ouspenski, II, S. J. Elledge and B. R. Brinkley (1999). "New yeast genes important for chromosome integrity and segregation identified by dosage effects on genome stability." Nucleic Acids Research 27(15): 3001-3008.
Ouspenski, I. I., S. J. Elledge and B. R. Brinkley (1999). "New yeast genes important for chromosome integrity and segregation identified by dosage effects on genome stability." Nucleic Acids Research 27(15): 3001-3008.
Parapouli, M., A. Vasileiadis, A.-S. Afendra and E. Hatziloukas (2020). "Saccharomyces cerevisiae and its industrial applications." AIMS microbiology 6(1): 1.
Preedy, V. R. (2011). Beer in health and disease prevention, Academic Press.
Qin, H. and M. Lu (2006). "Natural variation in replicative and chronological life spans of Saccharomyces cerevisiae." Experimental Gerontology 41(4): 448-456.
Ratcliff, W. C., J. D. Fankhauser, D. W. Rogers, D. Greig and M. Travisano (2015). "Origins of multicellular evolvability in snowflake yeast." Nature Communications 6: 9.
Replansky, T., V. Koufopanou, D. Greig and G. Bell (2008). "Saccharomyces sensu stricto as a model system for evolution and ecology." Trends in Ecology & Evolution 23(9): 494-501.
Reynolds, T. B. and G. R. Fink (2001). "Bakers' yeast, a model for fungal biofilm formation." Science 291(5505): 878-881.
Ronald, J., R. B. Brem, J. Whittle and L. Kruglyak (2005). "Local regulatory variation in Saccharomyces cerevisiae." Plos Genetics 1(2): 213-222.
Rusche, L. N. and J. Rine (2010). "Switching the mechanism of mating type switching: a domesticated transposase supplants a domesticated homing endonuclease." Genes & Development 24(1): 10-14.
Sampermans, S., J. Mortier and E. V. Soares (2005). "Flocculation onset in Saccharomyces cerevisiae: the role of nutrients." Journal of Applied Microbiology 98(2): 525-531.
Schmitt, M. E., T. A. Brown and B. L. Trumpower (1990). " A rapid and simple method for preparation of rna from Saccharomyces-cerevisiae." Nucleic Acids Research 18(10): 3091-3092.
Smukalla, S., M. Caldara, N. Pochet, A. Beauvais, S. Guadagnini, C. Yan, M. D. Vinces, A. Jansen, M. C. Prevost, J. P. Latge, G. R. Fink, K. R. Foster and K. J. Verstrepen (2008). "FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast." Cell 135(4): 726-737.
Stewart, G. G. (2009). "The Horace Brown Medal Lecture: Forty Years of Brewing Research." Journal of the Institute of Brewing 115(1): 3-29.
Tao, W. T. (2009). "Multicellularity of a unicellular organism in response to DNA replication stress." Research in Microbiology 160(1): 87-88.
Teunissen, A. and H. Y. Steensma (1995). " Review - the Dominant Flocculation Genes of Saccharomyces-cerevisiae Constitute a New Subtelomeric Gene Family." Yeast 11(11): 1001-1013.
Van Voorhies, W. A. (2012). "Robust Metabolic Responses to Varied Carbon Sources in Natural and Laboratory Strains of Saccharomyces cerevisiae." Plos One 7(1): 8.
Vergara-Alvarez, I., F. Quiroz-Figueroa, M. C. Tamayo-Ordonez, A. A. Oliva-Hernandez, C. P. Larralde-Corona and J. A. Narvaez-Zapata (2019). "Flocculation and Expression of FLO Genes of a Saccharomyces cerevisiae Mezcal Strain with High Stress Tolerance." Food Technology and Biotechnology 57(4): 544-553.
Verstrepen, K., G. Derdelinckx, H. Verachtert and F. Delvaux (2003). "Yeast flocculation: what brewers should know." Applied microbiology and biotechnology 61(3): 197-205.
Verstrepen, K. J., G. Derdelinckx, H. Verachtert and F. R. Delvaux (2003). "Yeast Flocculation: What Brewers Should Know." Applied Microbiology and Biotechnology 61(3): 197-205.
Visintin, R., K. Craig, E. S. Hwang, S. Prinz, M. Tyers and A. Amon (1998). "The Phosphatase Cdc14 Triggers Mitotic Exit by Reversal of CDK-dependent phosphorylation." Molecular Cell 2(6): 709-718.
Wang, Y. C., T. Shirogane, D. Liu, J. W. Harper and S. J. Elledge (2003). "Exit from exit: Resetting the cell cycle through AMN1 inhibition of G protein signaling." Cell 112(5): 697-709.
Watanabe, J., K. Uehara and Y. Mogi (2013). "Adaptation of the Osmotolerant Yeast Zygosaccharomyces rouxii to an Osmotic Environment Through Copy Number Amplification of FLO11D." Genetics 195(2): 393-+.
Weber, F. J. and J. A. M. deBont (1996). "Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes." Biochimica Et Biophysica Acta-Reviews on Biomembranes 1286(3): 225-245.
Westman, J. O., V. Mapelli, M. J. Taherzadeh and C. J. Franzen (2014). "Flocculation Causes Inhibitor Tolerance in Saccharomyces cerevisiae for Second-Generation Bioethanol Production." Applied and Environmental Microbiology 80(22): 6908-6918.
Xue, C., X. Q. Zhao and F. W. Bai (2010). "Effect of the Size of Yeast Flocs and Zinc Supplementation on Continuous Ethanol Fermentation Performance and Metabolic Flux Distribution Under Very High Concentration Conditions." Biotechnology and Bioengineering 105(5): 935-944.
Yvert, G., R. B. Brem, J. Whittle, J. M. Akey, E. Foss, E. N. Smith, R. Mackelprang and L. Kruglyak (2003). "Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors." Nature Genetics 35(1): 57-64.
Zheng, W., H. Y. Zhao, E. Mancera, L. M. Steinmetz and M. Snyder (2010). "Genetic analysis of variation in transcription factor binding in yeast." Nature 464(7292): 1187-U1106.
Zheng, Y. L. and S. A. Wang (2015). "Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations." Plos One 10(8): 17.