簡易檢索 / 詳目顯示

研究生: 鄭安捷
Cheng, An-Cheih
論文名稱: 抑制延胡索酸酶的表現導致 HeLa 細胞在抑制葡萄糖攝取產生細胞凋亡
Knockdown of fumarate hydratase expression results in apoptosis by inhibition of glucose uptake in HeLa cells
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 瓦氏效應延胡索酸酶抑癌基因細胞凋亡
外文關鍵詞: Warburg effect, Fumarate hydratase, tumor suppressor, apoptosis
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1926 年,Otto Warburg 提出一個理論即使在氧氣充足的情形下某些特定的腫瘤細胞產生能量的方式是依賴糖解作用而不是氧化磷酸化,這種現象被稱為瓦氏效應(Warburg effect)。在腫瘤細胞中造成糖解作用增加具有潛力的機制為粒線體缺失、缺氧、致癌信息和改變的代謝酵素,而延胡索酸酶(Fumarate hydratase, FH)屬於其中的一員。在先前的研究中,檸檬酸循環中的酵素延胡索酸酶(FH)在遺傳上的突變與遺傳性平滑肌瘤性腎細胞癌(Hereditary leiomyomatosis renal cellcarcinoma, HLRCC)有關。當延胡索酸酶(FH)突變會造成延胡索酸(fumarate)累積,過量的延胡索酸會抑制脯氨酸羥化酶(proline hydroxylase, PHD),而脯氨酸羥化酶(proline hydroxylase, PHD)會抑制缺氧誘導因子-1 (HIF-1)表現,進而造成腫瘤血管新生以及腫瘤細胞偏好糖解作用。在腎臟癌症中,延胡索酸酶被認為是一種抑癌基因(tumor suppressor),但在其他細胞株中的研究卻很少。在此次的研究中,我首先在子宮頸癌細胞中建立穩定沉默延胡索酸酶的細胞株並分析野生型子宮頸癌細胞(HeLa)和穩定沉默延胡索酸酶細胞株(HeLa-shFH)之間的差異。在正常情況下,抑制延胡索酸酶對細胞的生長、爬行能力和粒線體膜電位並沒有明顯的影響。持續性沉默FH 表現的穩定細胞株對葡萄糖攝取能力大於野生型HeLa細胞株。我嘗試利用2-去氧葡萄糖(2-deoxyglucose, 2-DG)抑制糖解作用及限制葡萄糖的來源並研究其對沉默延胡索酸酶細胞株的影響。我發現在處理不同葡萄糖濃度(0,1,4.5 mg/ml)或是在處理2-去氧葡萄糖(2-deoxyglucose, 2-DG)的狀況之下,HeLa-shFH 的細胞株顯示出比野生型細胞株具有更高的敏感性。並且在處理2-deoxyglucose 的沉默延胡索酸酶細胞株相較於野生型子宮頸癌細胞,其細胞死亡情形偏向細胞凋亡(apoptosis)而非細胞壞死(necrosis)。處理電子傳遞鏈complex I 抑制物,Rotenone,以及將細胞培養在不含L-glutamine 的培養液中,穩定沉默延胡索酸酶細胞株和野生型細胞株具有相同的影響。證明沉默延胡索酸酶細胞株對葡萄糖有依賴性。

    In 1926, Otto Warburg proposed the theory that certain cancer cells generate ATP dependent on glycolysis pathway rather than oxidative phosphorylation even in the presence of ample oxygen, the phenomenon was called Warburg effect.Mitochondrial defects, hypoxia, oncogenetic signals and altered metabolic enzymes are potential mechanisms leading to increase in glycolysis in cancer cells. Fumarate hydratase (FH) is the component of altered metabolic enzyme. In previous studies, germline mutation of the Kerbs cycle enzyme fumarate hydratase (FH) is related hereditary leiomyomatosis and renal cell cancer (HLRCC).And mutation of FH leads to accumulation of fumarate. The excess metabolite, fumarate inhibits the proline hydroxylases that suppress the expression of hypoxia inducible factor 1 (HIF-1), a transcription factor implicated in tumor angiogenesis and tumor-cell glycolysis. In renal cancer, FH is considered a tumor suppressor gene but rarely studies in other cell line. In this study, I established FH stable knockdown cell lines in HeLa cell and analyzed the differences between wide type cells and stable knockdown cell lines. Suppression of FH has no apparent impact on cell growth, migration ability and mitochondrial membrane potential in normal condition. HeLa-shFH cell lines increase glucose uptake. Then I try to inhibit glycolyis pathway by treatment of 2-deoxyglucose or limit glucose source in HeLa-shFH cell lines and investigate the effect of HeLa-shFH cell lines. I found HeLa-shFH cell lines appear to be more sensitive in low and no glucose condition or in 2-DG existence condition than wild type cell lines. Particularly, in the treatment of 2-deoxyglucose HeLa-shFH cell line prefer apoptosis to necrosis than HeLa cell. HeLa-shFH cell lines and wild type cell lines have the same effect by treatment of complex I inhibitor, Rotenone or cultured in no L-glutamine medium. I demonstrate that HeLa-shFH cell lines depend on glucose.

    第一章 緒論 1-1 腫瘤細胞的瓦氏效應-----------------------1 1-2 代謝酵素的多功能性-----------------------2 1-3 子宮頸癌---------------------------- 3 1-4 延胡索酸酶 (fumarate hydratase)-----------------3 1-5 細胞凋亡(apoptosis)----------------------4 1-6 研究動機----------------------------4 第二章 實驗材料及方法 2-1.實驗材料 2-1-1. 勝任細胞 (competent cell)菌株----------------5 2-1-2. 限制酶 (Restriction enzyme)-----------------5 2-1-3. 細胞株----------------------------5 2-1-4. 化學藥品---------------------------5 2-1-5. 試劑-----------------------------8 2-1-6. 抗體-----------------------------9 2-1-7. 培養液---------------------------10 2-1-8. 細菌用的培養基-LBA plate------------------11 2-1-9. 緩衝液---------------------------11 2-1-10. 各種試劑配製------------------------16 2-1-11. 勝任細胞 (competent cell) 之製備--------------18 2-1-12. 儀器設備-------------------------18 2-2.實驗方法 2-2-1. 基本分子生物技術 (1) 質體的製備---------------------------19 (2) 構築質體的方法-------------------------20 2-2-2. 細胞培養程序 (1) 細胞株與細胞的培養-----------------------23 (2) 細胞數目的計數-------------------------25 (3) 細胞的冷凍儲存-------------------------25 (4) 解凍細胞----------------------------25 2-2-3. 細胞相關實驗 (1)短暫性轉染(transient transfection)---------------26 (2)雙重冷光基因活性的測定(Dual-Luciferase assay)----------26 (3)蛋白質定量(Micro BCATM Protein Assay Reagent Kit)--------26 (4)西方墨點法(Western blotting)------------------27 (5)觀察細胞綠螢光表現量----------------------28 (6)免疫螢光染色分析(immunofluorescence stain)-----------28 (7)建立持續表現Hyg 基因及FH 的穩定細胞株(stable cell lines)----28 (8)細胞生長實驗--------------------------29 (9)細胞增殖分析 (MTT assay)--------------------29 (10)溴脫氧尿核苷混合實驗 (BrdU incorporation assay)--------29 (11)乳酸脫氫酶活性測定 (LDH activity assay)------------30 (12)傷口癒合細胞爬行能力分析實驗 (Wound healing migration assay)--30 (13)細胞集落形成法 (Colony formation assay)-------------30 (14)粒線體膜電位測定 (Mitochondria membrane potential)-------31 (15)細胞內ROS 測定-------------------------31 (16)細胞內H2O2 測定-------------------------31 (17)細胞週期測定 (Cell cycle)-------------------32 (18)Propidium Iodide (PI)-Annexin V 雙染實驗------------32 (19)Phalloidin staining----------------------32 (20)葡萄糖攝取實驗 (glucose uptake)----------------33 (21)細胞內ATP 含量測定-----------------------33 (22)細胞培養液pH 值測定----------------------34 2-2-4. 實驗質體的構築方法--------------------34 第三章 實驗結果 3-1 分析內生性fumarate hydratase (FH)的表現量------------36 3-2 利用siRNA 評估系統篩選出有效的fumarate hydratase (FH) shRNA 進而合成shRNA------------------------------36 3-3 建立持續性沉默FH 表現的HeLa 細胞株---------------36 3-4 分析持續性沉默FH 表現對細胞型態與F-actin 形成的影響------37 3-5 分析持續性沉默FH 表現的細胞株其生長速率及細胞爬行能力與野生型HeLa細胞株的差異----------------------------37 3-6 分析持續性沉默FH 表現對細胞形成群落能力的影響---------38 3-7 分析持續性沉默FH 表現對粒線體的影響---------------38 3-8 分析持續性沉默FH 表現對細胞能量代謝的影響------------38 3-9 分析持續性沉默FH 表現的穩定細胞株與野生型HeLa 細胞株對葡萄糖攝取能力(glucose uptake)的影響----------------------39 3-10 限制葡萄糖的來源研究其對持續性沉默FH 表現的穩定細胞株的影響--39 3-11 分析野生型HeLa 細胞株與持續性沉默FH 表現的穩定細胞株對醣解作用抑制劑2-deoxyglucose(2-DG)的敏感性-----------------40 3-12 分析野生型HeLa 細胞株與持續性沉默FH 表現的穩定細胞株對電子傳遞鏈complexI 抑制物Rotenone 的影響-------------------41 3-13 分析野生型HeLa 細胞株與持續性沉默FH 表現的穩定細胞株培養於不含L-glutamine 培養液其生長速率的影響-----------------41 第四章 討論----------------------------43 第五章 參考文獻--------------------------46 第六章 實驗結果圖表------------------------50

    Alam, N., Bevan, S., Churchman, M., Barclay, E., Barker, K., Jaeger, E., Nelson, H.,
    Healy, E., Pembroke, A., and Friedmann, P. (2001). Localization of a gene (MCUL1)
    for multiple cutaneous leiomyomata and uterine fibroids to chromosome 1q42. 3-q43.
    The American Journal of Human Genetics 68, 1264-1269.
    Alam, N., Rowan, A., Wortham, N., Pollard, P., Mitchell, M., Tyrer, J., Barclay, E.,
    Calonje, E., Manek, S., and Adams, S. (2003). Genetic and functional analyses of FH
    mutations in multiple cutaneous and uterine leiomyomatosis, hereditary
    leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Human
    molecular genetics 12, 1241.
    Balss, J., Meyer, J., Mueller, W., Korshunov, A., Hartmann, C., and von Deimling, A.
    (2008). Analysis of the IDH1 codon 132 mutation in brain tumors. Acta
    neuropathologica 116, 597-602.
    Brahimi-Horn, M., and Pouyssegur, J. (2004). The hypoxia-inducible factor and tumor
    progression along the angiogenic pathway. International review of cytology 242,
    157-213.
    Christofk, H., Vander Heiden, M., Harris, M., Ramanathan, A., Gerszten, R., Wei, R.,
    Fleming, M., Schreiber, S., and Cantley, L. (2008). The M2 splice isoform of pyruvate
    kinase is important for cancer metabolism and tumour growth. Nature 452, 230-233.
    Czy ewska, J., Guzi ska-Ustymowicz, K., Kemona, A., and Bandurski, R. (2008). The
    expression of matrix metalloproteinase 9 and cathepsin B in gastric carcinoma is
    associated with lymph node metastasis, but not with postoperative survival. Folia
    Histochemica et Cytobiologica 46, 57-64.
    Doorbar, J. (2007). Papillomavirus life cycle organization and biomarker selection.
    Disease Markers 23, 297-313.
    Fantin, V., St-Pierre, J., and Leder, P. (2006). Attenuation of LDH-A expression
    uncovers a link between glycolysis, mitochondrial physiology, and tumor
    maintenance. Cancer Cell 9, 425-434.
    Feron, O. (2009). Pyruvate into lactate and back: From the Warburg effect to
    symbiotic energy fuel exchange in cancer cells. Radiotherapy and Oncology 92,
    329-333.
    Funasaka, T., Hu, H., Hogan, V., and Raz, A. (2007). Down-regulation of
    phosphoglucose isomerase/autocrine motility factor expression sensitizes human
    fibrosarcoma cells to oxidative stress leading to cellular senescence. Journal of
    Biological Chemistry 282, 36362.
    Gatenby, R., and Gillies, R. (2004). Why do cancers have high aerobic glycolysis?
    Nature reviews cancer 4, 891-899.
    Gottlieb, E., and Tomlinson, I. (2005). Mitochondrial tumour suppressors: a genetic
    and biochemical update. Nature reviews cancer 5, 857-866.
    Isaacs, J., Jung, Y., Mole, D., Lee, S., Torres-Cabala, C., Chung, Y., Merino, M.,
    Trepel, J., Zbar, B., and Toro, J. (2005). HIF overexpression correlates with biallelic
    loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF
    stability. Cancer Cell 8, 143-153.
    Kim, J., and Dang, C. (2005). Multifaceted roles of glycolytic enzymes. Trends in
    biochemical sciences 30, 142-150.
    Kim, J., Tchernyshyov, I., Semenza, G., and Dang, C. (2006). HIF-1-mediated
    expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular
    adaptation to hypoxia. Cell metabolism 3, 177-185.
    Ko, Y., Pedersen, P., and Geschwind, J. (2001). Glucose catabolism in the rabbit VX2
    tumor model for liver cancer: characterization and targeting hexokinase. Cancer
    letters 173, 83-91.
    Krammer, P. (1998). CD95 (APO-1/Fas)-mediated apoptosis: live and let die.
    Advances in Immunology 71, 163-210.
    Kurtoglu, M., Gao, N., Shang, J., Maher, J., Lehrman, M., Wangpaichitr, M., Savaraj,
    N., Lane, A., and Lampidis, T. (2007). Under normoxia, 2-deoxy-D-glucose elicits
    cell death in select tumor types not by inhibition of glycolysis but by interfering with
    N-linked glycosylation. Molecular cancer therapeutics 6, 3049.
    Launonen, V., Vierimaa, O., Kiuru, M., Isola, J., Roth, S., Pukkala, E., Sistonen, P.,
    Herva, R., and Aaltonen, L. (2001). Inherited susceptibility to uterine leiomyomas and
    renal cell cancer. Proceedings of the National Academy of Sciences 98, 3387.
    Liu, H., Hu, Y., Savaraj, N., Priebe, W., and Lampidis, T. (2001). Hypersensitization
    of Tumor Cells to Glycolytic Inhibitors. Biochemistry 40, 5542-5547.
    Liu, H., Savaraj, N., Priebe, W., and Lampidis, T. (2002). Hypoxia increases tumor
    cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C).
    Biochemical pharmacology 64, 1745-1751.
    Maher, J., Krishan, A., and Lampidis, T. (2004). Greater cell cycle inhibition and
    cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs
    aerobic conditions. Cancer chemotherapy and pharmacology 53, 116-122.
    Mattevi, A., Bolognesi, M., and Valentini, G. (1996). The allosteric regulation of
    pyruvate kinase. FEBS letters 389, 15-19.
    Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A., and Saavedra, E.
    (2007). Energy metabolism in tumor cells. FEBS journal 274, 1393-1418.
    Munoz, N., Bosch, F., De Sanjose, S., Tafur, L., Izarzugaza, I., Gili, M., Viladiu, P.,
    Navarro, C., Martos, C., and Ascunce, N. (1992). The causal link between human
    Nature reviews cancer 4, 891-899.
    Gottlieb, E., and Tomlinson, I. (2005). Mitochondrial tumour suppressors: a genetic
    and biochemical update. Nature reviews cancer 5, 857-866.
    Isaacs, J., Jung, Y., Mole, D., Lee, S., Torres-Cabala, C., Chung, Y., Merino, M.,
    Trepel, J., Zbar, B., and Toro, J. (2005). HIF overexpression correlates with biallelic
    loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF
    stability. Cancer Cell 8, 143-153.
    Kim, J., and Dang, C. (2005). Multifaceted roles of glycolytic enzymes. Trends in
    biochemical sciences 30, 142-150.
    Kim, J., Tchernyshyov, I., Semenza, G., and Dang, C. (2006). HIF-1-mediated
    expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular
    adaptation to hypoxia. Cell metabolism 3, 177-185.
    Ko, Y., Pedersen, P., and Geschwind, J. (2001). Glucose catabolism in the rabbit VX2
    tumor model for liver cancer: characterization and targeting hexokinase. Cancer
    letters 173, 83-91.
    Krammer, P. (1998). CD95 (APO-1/Fas)-mediated apoptosis: live and let die.
    Advances in Immunology 71, 163-210.
    Kurtoglu, M., Gao, N., Shang, J., Maher, J., Lehrman, M., Wangpaichitr, M., Savaraj,
    N., Lane, A., and Lampidis, T. (2007). Under normoxia, 2-deoxy-D-glucose elicits
    cell death in select tumor types not by inhibition of glycolysis but by interfering with
    N-linked glycosylation. Molecular cancer therapeutics 6, 3049.
    Launonen, V., Vierimaa, O., Kiuru, M., Isola, J., Roth, S., Pukkala, E., Sistonen, P.,
    Herva, R., and Aaltonen, L. (2001). Inherited susceptibility to uterine leiomyomas and
    renal cell cancer. Proceedings of the National Academy of Sciences 98, 3387.
    Liu, H., Hu, Y., Savaraj, N., Priebe, W., and Lampidis, T. (2001). Hypersensitization
    of Tumor Cells to Glycolytic Inhibitors. Biochemistry 40, 5542-5547.
    Liu, H., Savaraj, N., Priebe, W., and Lampidis, T. (2002). Hypoxia increases tumor
    cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C).
    Biochemical pharmacology 64, 1745-1751.
    Maher, J., Krishan, A., and Lampidis, T. (2004). Greater cell cycle inhibition and
    cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs
    aerobic conditions. Cancer chemotherapy and pharmacology 53, 116-122.
    Mattevi, A., Bolognesi, M., and Valentini, G. (1996). The allosteric regulation of
    pyruvate kinase. FEBS letters 389, 15-19.
    Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A., and Saavedra, E.
    (2007). Energy metabolism in tumor cells. FEBS journal 274, 1393-1418.
    Munoz, N., Bosch, F., De Sanjose, S., Tafur, L., Izarzugaza, I., Gili, M., Viladiu, P.,
    Navarro, C., Martos, C., and Ascunce, N. (1992). The causal link between human
    papillomavirus and invasive cervical cancer: a population-based case-control study in
    Colombia and Spain. International Journal of Cancer 52, 743-749.
    Parsons, D., Jones, S., Zhang, X., Lin, J., Leary, R., Angenendt, P., Mankoo, P., Carter,
    H., and Siu, I. (2008). An integrated genomic analysis of human glioblastoma
    multiforme. Science 321, 1807.
    Pastorino, J., Shulga, N., and Hoek, J. (2002). Mitochondrial binding of hexokinase II
    inhibits Bax-induced cytochrome c release and apoptosis. Journal of Biological
    Chemistry 277, 7610.
    Pedersen, P. (2007). Warburg, me and Hexokinase 2: multiple discoveries of key
    molecular events underlying one of cancers¡¦ most common phenotypes, the
    ¡§Warburg Effect¡¨, ie, elevated glycolysis in the presence of oxygen. Journal of
    bioenergetics and biomembranes 39, 211-222.
    Pelicano, H., Martin, D., Xu, R., and Huang, P. (2006). Glycolysis inhibition for
    anticancer treatment. Oncogene 25, 4633-4646.
    Pollard, P., Briere, J., Alam, N., Barwell, J., Barclay, E., Wortham, N., Hunt, T.,
    Mitchell, M., Olpin, S., and Moat, S. (2005a). Accumulation of Krebs cycle
    intermediates and over-expression of HIF1 in tumours which result from germline
    FH and SDH mutations. Human molecular genetics 14, 2231.
    Pollard, P., Wortham, N., Barclay, E., Alam, A., Elia, G., Manek, S., Poulsom, R., and
    Tomlinson, I. (2005b). Evidence of increased microvessel density and activation of
    the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell
    cancer syndrome. The journal of pathology 205, 41-49.
    Rempel, A., Mathupala, S., Griffin, C., Hawkins, A., and Pedersen, P. (1996). Glucose
    catabolism in cancer cells: amplification of the gene encoding type II hexokinase.
    Cancer research 56, 2468.
    Samudio, I., Fiegl, M., and Andreeff, M. (2009). Mitochondrial uncoupling and the
    Warburg effect: molecular basis for the reprogramming of cancer cell metabolism.
    Cancer research 69, 2163.
    Scaduto, R., and Grotyohann, L. (1999). Measurement of mitochondrial membrane
    potential using fluorescent rhodamine derivatives. Biophysical journal 76, 469-477.
    Schmitz, I., Kirchhoff, S., and Krammer, P. (2000). Regulation of death
    receptor-mediated apoptosis pathways. The International Journal of Biochemistry &
    Cell Biology 32, 1123-1136.
    Selak, M., Armour, S., MacKenzie, E., Boulahbel, H., Watson, D., Mansfield, K., Pan,
    Y., Simon, M., Thompson, C., and Gottlieb, E. (2005). Succinate links TCA cycle
    dysfunction to oncogenesis by inhibiting HIF-[alpha] prolyl hydroxylase. Cancer Cell
    7, 77-85.
    Soldani, C., and Scovassi, A. (2002). Poly (ADP-ribose) polymerase-1 cleavage
    during apoptosis: an update. Apoptosis 7, 321-328.
    Swietach, P., Vaughan-Jones, R., and Harris, A. (2007). Regulation of tumor pH and
    the role of carbonic anhydrase 9. Cancer and Metastasis Reviews 26, 299-310.
    Taylor, R., and Turnbull, D. (2005). Mitochondrial DNA mutations in human disease.
    Nature Reviews Genetics 6, 389-402.
    Thompson, C. (2009). Metabolic enzymes as oncogenes or tumor suppressors. New
    England Journal of Medicine 360, 813.
    Tsutsumi, S., Hogan, V., Nabi, I., and Raz, A. (2003). Overexpression of the autocrine
    motility factor/phosphoglucose isomerase induces transformation and survival of
    NIH-3T3 fibroblasts. Cancer research 63, 242.
    Warburg, O. (1956). On the origin of cancer cells. Science 123, 309-314.
    Wentzensen, N., Vinokurova, S., and Doeberitz, M. (2004). Systematic review of
    genomic integration sites of human papillomavirus genomes in epithelial dysplasia
    and invasive cancer of the female lower genital tract. Cancer research 64, 3878.
    Wu, M., Wu, R., Hung, C., Cheng, T., Tsai, W., and Chang, W. (2005). Simple and
    efficient DNA vector-based RNAi systems in mammalian cells. Biochemical and
    biophysical research communications 330, 53-59.
    Yanagawa, T., Funasaka, T., Tsutsumi, S., Watanabe, H., and Raz, A. (2004). Novel
    roles of the autocrine motility factor/phosphoglucose isomerase in tumor malignancy. Endocrine-Related Cancer 11, 749.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE