簡易檢索 / 詳目顯示

研究生: 蘇昱瑄
Su, Yu-Syuan
論文名稱: 增強 Ku 波段地基合成孔徑雷達於植生區域反射訊號一致性
Enhance the Coherence of Reflected Signal at Vegetation monitoring area for Ku-band Ground-Based Synthetic Aperture Radar
指導教授: 余騰鐸
Yu, Teng-To
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 79
中文關鍵詞: 地基合成孔徑雷達干涉技術同調性植生邊坡監測預警系統
外文關鍵詞: ground-based synthetic aperture radar interferometry, coherence, vegetation, slope monitoring and early warning system
相關次數: 點閱:123下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於歐亞大陸板塊與菲律賓海板塊聚合處,地質較為年輕破碎,又因氣候、人為因素,台灣山區不免常常受到邊坡崩塌災害的威脅,坡地崩塌帶來的災害造成山區人民的生命財產損失,故需要積極地去避免與監測。監測山區穩定的技術種類繁多,各有不同的優缺點。本研究來探討地基合成孔徑雷達(Ground-based synthetic aperture radar,GBSAR)用於台灣山區邊坡的監測。ku波段之GBSAR應用於植被茂密區域有所限制,需設法解決。ku波段因其波長較短,擁有比其他中長波段更高的精度,可達毫米等級,其對於變形的敏感度,運用於邊坡監測是相當有效。但也因其波長短,無法穿透植生觀察地表。雷達干涉技術依賴同調性進行處理,若同調性過低,則無法進行後續位移量計算。植生區域因樹葉晃動及散射特性,造成同調性不高,常使GBSAR監測無法通過同調性門檻。
    本研究提出以帆布鋪設於植生區域,降低其粗糙度、減少散亂射,以提升同調性。設計兩項實驗證實帆布可於植生區域提升同調性,並於基隆新山水庫及高雄寶來崩塌進行兩次現場測試,提升同調性表現新山水庫提升七成,寶來崩塌甚至達三倍,以證實帆布提高同調性之能力。也比較了帆布與角反射器皆有提升同調性之能力,但帆布優勢在於其為面狀數據且較方便攜帶鋪設。最後,建置一款GBInSAR邊坡監測預警流程,同時導入S-GBSAR與C-GBSAR概念,期望節省人力、物力成本,並有效即時預警,提高防救災能量。

    Landslide disasters are often occurred in the mountainous areas of Taiwan; due to climate and human factors and also relatively young and broken geology. Therefore, it require routine monitoring to avoid the loss of properties or life. There are various technologies for monitoring the mountainous stability with it’s own advantages and disadvantages. This study is to explore the use of Ku band ground-based synthetic aperture radar (GBSAR) for monitoring slopes movement in Taiwan. The radar signal of ku-band GBSAR scattered at vegetated areas thus limited its application, it is necessary to resolve it for acquiring high resolution result. Due to its shorter wavelength, the ku band has higher accuracy than other medium and long bands, reaching the millimeter level. Its sensitivity to deformation is quite effective when used in slope monitoring. But also because of its short wavelength, it cannot penetrate the vegetation for ground observation. Radar interferometric technology relies on signal coherence for processing the amount of deformation. If coherence is too low, displacement calculations cannot be performed. The swaying and scattering characteristics of leaves in the vegetation area result in low coherence, which often make GBSAR returning signal unable to pass the coherence threshold. This research proposes to lay an impervious plastic cloth ontop of the vegetation area to reduce its roughness, reduce scattered shots, and improve coherence. Field engineers apply the coverage of impervious plastic cloth to stop the water infiltration as first treatment where newly ground fractures occurred. Without adding any extra operation and also could obtained the data at hundreds meters away is the specialty of this setup. Designed two experiments to prove this arrangement could improve the coherence in the vegetation areas at two test sites in Keelung Xinshan Reservoir and Kaohsiung Baolai collapse, respectively. The improvement of the coherence performance in Xinshan Reservoir increased by 70% and tripled in the Bora collapsed even. To demonstrate the ability of impervious plastic cloth in improving the coherence, comparing this setup to the corner reflectors have been made. The advantage of using impervious plastic cloth is providing a surface-shaped data and it is more convenient to carry and lay for any emergent embedding region. Finally, by resolve the GBInSAR bad data quality problem in vegetated area, a slope monitoring and early warning process are introduced with concepts of S-GBSAR and C-GBSAR to save manpower and costs thus to improve disaster prevention.

    摘要 I Abstract II 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 地基合成孔徑雷達發展及應用 3 2.2 不同波段雷達發展應用與植生影響 6 2.3 地基合成孔徑雷達監測能力 8 第三章 研究方法與區域 11 3.1 研究工具 11 3.1.1 地基合成孔徑雷達GBInSAR_chsck01介紹 11 3.1.2 地基合成孔徑雷達處理流程 14 3.2 實驗流程與結果 24 3.2.1 植生類型:草地 28 3.2.2 植生類型:花叢 32 3.3 研究區域 35 3.3.1 基隆新山水庫概述 35 3.3.2 高雄寶來崩塌概述 37 3.4研究流程 38 3.4.1 基隆新山水庫 41 3.4.2 高雄寶來崩塌 45 3.4.3 變動量測試 48 第四章 結果與討論 50 4.1 同調性比較 50 4.1.1 基隆新山水庫 50 4.1.2高雄寶來崩塌 52 4.2 變動量測試結果 59 4.3 帆布與角反射器比較 62 4.4 GBSAR 固定與巡迴式監測 63 4.5 建置邊坡監測預警流程 66 第五章 結論與建議 69 5.1 結論 69 5.2 建議 70 第六章 參考文獻 71

    1. 王彥平、呂森、曹琨、袁智、林贇、李洋(2019),地基SAR多閾值迭代優化PS點選擇方法,信號處理,第35卷,第6期,1104-1110。
    2. 曲世勃、王彥平、洪文(2011),PSInSAR的永久散射體時序選擇方法,電子與信息學報,第33卷,第2期,381-387。
    3. 曲世勃、王彥平、譚維賢、洪文(2011),地基SAR形變監測誤差分析與實驗,電子與信息學報,第33卷,第1期,1-7。
    4. 行政院環境保護署(2010),新山水庫水質治理方案,水汙染防治97年執行成果。
    5. 吳孟姍、陳國威、黃振全(2013),地面式三維雷射掃瞄於野溪地形監測之應用-以屏東縣來社溪上游段為例,社團法人中華水土保持學會102年度年會,1-7。
    6. 吳星輝、馬海濤、張杰(2019),地基合成孔徑雷達的發展現狀及應用,武漢大學學報,信息科學版,第44卷,第7期,1073-1081。
    7. 李俊慧、王洪、汪學剛、燕陽(2016),GBSAR系統的發展及其形變監測應用,太赫茲科學與電子信息學報,第14卷,第5期,723-728。
    8. 岳順、岳建平、邱志偉、汪學琴、郭樂萍(2016),三維激光掃描數據輔助GBInSAR相位解纏方法研究,測繪工程,12-15。
    9. 林洧全(2012),衛星影像判釋技術應用於山崩潛勢分析及風險評估模式建置之研究,長榮大學土地管理與開發所,碩士論文,共114頁。
    10. 林穎東、張國楨、楊啟見(2018),利用物件式導向進行崩塌地種類判釋、復育追蹤-以高雄市寶來地區為例,中華水土保持學報,第49卷,第2期,98-109。
    11. 邱志偉、岳建平、汪學琴(2014),地基雷達系統IBIS-L在大壩變形監測中的應用,長江科學院院報,第31卷,第10期,104-107。
    12. 胡波、汪漢勝(2010),用PSInSAR技術監測地面沉降研究,大地測量與地球動力學,第30卷,第2期,34-39。
    13. 陳郁琪(2019),PS-InSAR技術於台灣山區地形變化偵測誤差因素分析,國立成功大學資源工程研究所,碩士論文,共101頁。
    14. 陳強、李永樹、劉國祥(2006),干涉雷達永久散射體識別方法的對比分析,遙感信息,第86卷,20-23。
    15. 陳強、劉國祥、丁曉利、李永樹(2007),永久散射體雷達差分干涉應用於區域地表沉降探測,地球物理學報,第50卷,第3期,737-743。
    16. 陳強、劉國祥、李永樹、丁曉利(2006),干涉雷達永久散射體自動探測-算法與實驗結果,測繪學報,第35卷,第2期,112-117。
    17. 麻德明、劉焱雄、徐文學、王彥兵、高興國(2018),GB-InSAR的監測流程和關鍵技術,海洋開發與管理,第8期,81-85。
    18. 彭宗仁、黃鎮豐、陳文政、周士鈞(2007),基隆新山水庫壩體滲流水之來源探討-逐步多元迴歸分析之結果,中華水土保持學報,第38卷,第1期,87-103。
    19. 曾濤、鄧雲開、胡程、田衛明(2019),地基差分干涉雷達發展現狀及應用實例,雷達學報,第8卷,第1期,154-170。
    20. 黃其歡、張理想(2011),基於GBInSAR技術的微變形監測系統及其在大壩變形監測中的應用,水利水電科技進展,第31卷,第3期。
    21. 黃鑑水(1998),臺北-臺灣地質圖幅及說明書1/50,000,新北市中和區: 經濟部中央地質調查所。
    22. 楊宇恩、余騰鐸、林彥均、蘇昱瑄(2020),Ku波段地基合成孔徑雷達干涉技術於邊坡安全即時監測應用與限制,中華水土保持學報。
    23. 楊紅磊、彭軍還、崔洪曜(2012),GB-InSAR監測大型露天礦邊坡形變,地球物理學進展,第27卷,第4期,1804-1811。
    24. 經濟部中央地質調查所(2019),地質雲加值應用平臺,https://www.geologycloud.tw/map/zh-tw
    25. 經濟部水利署北區水資源局(2021),新山水庫,https://www.wranb.gov.tw/3452/3475/26144/%E6%96%B0%E5%B1%B1%E6%B0%B4%E5%BA%AB/
    26. 董文文、朱鴻鵠、孫義杰、施斌(2016),邊坡變形監測技術現狀及新進展,工程地質學報,第24卷,第6期,1088-1095。
    27. 劉龍龍、張繼賢、趙爭、康琪、郗曉菲(2019),GB-SAR變形監測技術研究現狀與展望,測繪通報,第11期,1-7。
    28. 盧玉芳(2007),以雷達干涉技術監測雲林地層下陷,國立交通大學土木工程學系,碩士論文,共117頁。
    29. 龍四春、陳鵬琦、袁英、蔣宗立、伍夢清(2015),GB-InSAR技術及其形變監測,測繪通報,第9期,1-5。
    30. 謝嘉聲、史天元(1999),以雷達干涉量測技術產生數值高程模型資料實作探討,中華民國地圖學會會刊,第10期,69-82。
    31. Antonello, G., Casagli, N., Farina, P., Fortuny, J., Leva, D., Nico, G., Sieber, A, J., & Tarchi, D. (2003). A ground-based interferometer for the safety monitoring of landslides and structural deformations. IEEE International Geoscience and Remote Sensing Symposium, 218-220
    32. Askne, J, I, H., Dammert, P, B, G., Ulander, L, M, H., & Smith, G. (1997). C-Band Repeat-Pass Interferometric SAR Observations of the Forest. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 25-35.
    33. Bardi, F., Frodella, W., Ciampalini, A., Bianchini, S., Del Ventisette, C., Gigli, G., ... & Casagli, N. (2014). Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study. Geomorphology, 223, 45-60.
    34. Crosetto, M., Monserrat, O., Luzi, G., Cuevas-González, M., & Devanthéry, N. (2014). Discontinuous GBSAR deformation monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 136-141.
    35. Dematteis, N., Giordan, D., Zucca, F., Luzi, G., & Allasia, P. (2018). 4D surface kinematics monitoring through terrestrial radar interferometry and image cross-correlation coupling. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 38-50.
    36. Demirci, S., Yilmaz, B., Isiker, H., Gokkan, S., & Özdemir, C. (2019). Characterization of natural and manmade targets from L-band ground-based polarimetric synthetic aperture radar data. Journal of Applied Remote Sensing, 13(4), 044512.
    37. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent Scatterers in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20.
    38. Ferrigno, F., Gigli, G., Fanti, R., Intrieri, E., & Casagli, N. (2017). GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy). Natural Hazards and Earth System Sciences, 17(6), 845-860.
    39. Forstén, H. (2017). "Third version of homemade 6 GHz FMCW radar." <https://hforsten.com/third-version-of-homemade-6-ghz-fmcw-radar.html>. (11/4, 2020).
    40. Hajj, M, E., Baghdadi, N., Bazzi, H., & Zribi, M. (2018). Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands. Remote sensing, 11(1), 10.3390/rs11010031.
    41. Hamasaki, T., Zhou, Z. S., & Sato, M. (2003). Development and applications of an interferometric ground-based sar system. IEEE Transactions on Geoscience and Remote sensing, 41(4).
    42. Hamdan, O., Aziz, H, K., & Rahman, K, A. (2011). Remotely sensed L-band sar data for tropical forest biomass estimation. Journal of Tropic Forest Science, 23(3), 318-327.
    43. Hassan, A., Xu, J., Zhang, L., Liu, G., Schmitt, A., Xing, C., ... & Schwieger, V. (2018). Towards integration of GNSS and GB-SAR measurements: Exemplary monitoring of a rock fall at the Yangtze River in China. In Proceedings of the Embracing Our Smart World Where the Continents Connect: Enhancing the Geospatial Maturity of Societies, Proceedings of the FIG Congress.
    44. Intrieri, E., Gigli, G., Nocentini, M., Lombardi, L., Mugnai, F., Fidolini, F., & Casagli, N. (2015). Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology, 241, 304-314.
    45. Koo, V, C., Lim, C, S., William, H, H, H., Lee, L, W., Cheaw, W, G., Chua, M, Y., Lim, T, S., & Chan, Y, K. (2015). Ku-band Ground-based SAR Experiments for Surface Deformation Monitoring. IEEE Synthetic Aperture Radar, 641-644.
    46. Kurosu, T., Fujita, M., & Chiba, K. (1995). Monitoring of Rice Crop Growth From Space Using the ERS-1 C-band SAR. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 1092-1096.
    47. Lim, C, S., Chan, Y, K., Koo, V, C., & Hii, W, H, H. (2019). Phase Statistical Model and Correction in Imagery of Ground Based Synthetic Aperture Radar (GBSAR) for Land Deformation Monitoring. Progress In Electromagnetics Research, 97, 189-200.
    48. Lin, Y., Zhang, Q., Wang, Y., Li, Y., Song, Y., & Liu, Y. (2019). 3D imaging performance analysis of multi-baseline Circular GBSAR. In 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1-5.
    49. Long, S., Tong, A., Yuan,Y., Li, Z., Wu, W., & Zhu, C. (2018). New Approaches to Processing Ground-Based SAR (GBSAR) Data for Deformation Monitoring. Remote sensing, 10(12), 10.3390/rs10121936.
    50. Mao, W, J., & Chang, W, L. (2015). Deformation monitoring by ground-based SAR interferometry (GB-InSAR): a field test in dam. Advances in Information Sciences and Service Sciences, 7(2), 133-140.
    51. Martínez, A., Aguasca, A., Lort, M., & Broquetas, A. (2016). Micrometric deformation imaging at W-Band with GBSAR. European Journal of Remote Sensing, 49, 719-733.
    52. Michelini, A., Coli, N., Coppi, F., Farina, P., Leoni, L., Costa, F., ... & Costa, T. (2014). Advanced data processing of ground-based synthetic aperture radar for slope monitoring in open pit mines. In Proceedings of the 2015 24th International Mining Congress of Turkey, 420-427.
    53. Monserrat, O., Crosetto, M., & Luzi, G. (2014). A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 40-48.
    54. Morain, S, A., & Simonett, D, S. (1967). K-Band Radar in Vegetation Mapping. University of Kansas, Center for Research, 730-740.
    55. Morrison, K. (2003). Towards a quantitative understanding of the effects of wind motion on airborne and satellite SAR imagery of vegetation. In IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings, 5, 3281-3283.
    56. Pieraccini, M., & Miccinesi, L. (2019). Ground-Based Radar Interferometry: A Bibliographic Review. Remote sensing, 11(9), 10.3390/rs11091029.
    57. Pieraccini, M., Tarchi, D., Rudolf, H., Leva, D., Luzi, G., Bartoli, G., & Atzeni, C. (2000). Structural static testing by interferometric synthetic radar. NDT and E International, 33(2000), 565-570.
    58. Qiu, Z., Yue, J., & Wang, X. (2014). Application of subsidence monitoring over Yangtze river marshland with ground-based SAR system IBIS. In Applications of Digital Image Processing, 9217, 92172C. International Society for Optics and Photonics.
    59. Qiu, Z., Yue, J., Wang, X., & Yue, S. (2016). Deformation monitoring of large structures by ground-based sar interferometry. Boletim de Ciências Geodésicas, 22(1), 35-53.
    60. Rao, S. (2017). "Introduction to mmWave sensing: FMCW radars." Texas Instruments (TI) mmWave Training Series.
    61. RIEGL. (2017),RIEGL VZ-1000,copyright RIEGL Laser Measurement Systems GmbH.1-4.
    62. Sato, M., Zhou, Z. S., Hamasaki, T., & Boerner, W. M. (2005). Development of a ground-based synthetic aperture radar (GB-SAR) system and its applications to environment monitoring and disaster prevention. In ESA Special Publication, 586, 20.
    63. Severin, J., Eberhardt, E., Leoni, L., & Fortin, S. (2014). Development and application of a pseudo-3D pit slope displacement map derived from ground-based radar. Engineering geology, 181, 202-211.
    64. Solberg, S., Astrup, R., Gobakken, T., Næsset, E., & Weydahl, D, J. (2010). Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sensing of Environment, 114, 2353-2360.
    65. Talich, M., Glöckner, M., Böhm, O., Antoš, F., Soukup, L., Havrlant, J., & Šolc, J. (2014). The application of the ground-based InSAR technique for the deformation monitoring of concrete hydropower dam Orlík on Vltava river. In Proceedings of the 6th International Conference on Engineering Surveying, Prague, Czech Republic, 3, 1-7.
    66. Tarchi, D., Casagli, N., Fanti, R., Leva, D , D., Luzi, G., Pasuto, A., Pieraccini, M., & Silvano, S. (2003). Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Engineering Geology, 68(2003), 15-30.
    67. Tarchi, D., Rudolf, H., Pieraccini, M., & Atzeni, C. (2000). Remote monitoring of buildings using a ground-based SAR:application to cultural heritage survey. Remote sensing, 21(18), 3545-3551.
    68. Tian, W., Zhao, Z., Hu, C., Wang, J., & Zeng, T. (2019). GB-InSAR-based DEM generation method and precision analysis. Remote Sensing, 11(9), 997.
    69. Toan, T, L., Laur, H., Mougin, E., & Lopes, A. (1989). Multitemporal and Dual-Polarization Observations of Agricultural Vegetation Covers by X-Band SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 27(6), 709-718.
    70. Wang, P., & Xing, C. (2018). RESEARCH ON COORDINATE TRANSFORMATION METHOD OF GB-SAR IMAGE SUPPORTED BY 3D LASER SCANNING TECHNOLOGY. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42(3).
    71. Wang, Z., Li, Z., & Mills, J. (2018). A new approach to selecting coherent pixels for ground-based SAR deformation monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 412-422.
    72. William, P, W., & Harold, C, M. (1971). "Vegetation Penetration" With K-Band Imaging Radars. IEEE Transactions on Geoscience Electronics, 9(3), 147-155.
    73. Zeng, T., Mao, C., Hu, C., Yang, X., & Tian, W. (2015). Multi-static MIMO-SAR three dimensional deformation measurement system. In 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 297-301.
    74. Zhou, Z. S., Boerner, W. M., & Sato, M. (2004). Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring. IEEE Transactions on Geoscience and Remote Sensing, 42(9), 1803-1810.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE