簡易檢索 / 詳目顯示

研究生: 黃亮維
Huang, Liang-Wei
論文名稱: 設備監控雲端運算服務之設計與實作
Design and Implementation of Equipment Monitoring Cloud Computing Services
指導教授: 鄭芳田
Cheng, Fan-Tian
共同指導教授: 洪敏雄
Hung, Min-Husing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 56
中文關鍵詞: 雲端運算設備監控系統雲端建模服務推估模型創新營運模式
外文關鍵詞: Cloud Computing, Equipment Monitoring System, Cloud-based Model Creation Service, Conjecture Model, Novel Business Model
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著資訊與網路科技的快速發展,雲端運算已成為網際網路運用的新趨勢。企業使用雲端運算服務,除了可以節省自行建置與維護資訊硬體的昂貴成本,也可以建立新的營運模式,以有效增加商業利益。當設備數量龐大時,傳統以網際網路為基礎的設備監控系統即可能面臨計算與儲存能力不足的問題,降低系統的運作效能。為了利用雲端運算的優點改進傳統設備監控系統之缺失,本研究發展了一個雲端建模服務框架及其必要的核心機制,並利用微軟的平台即服務公有雲Windows Azure,建置了一個雲端建模服務系統。經由本系統,許多使用者將得以透過網際網路使用雲端運算強大的計算與儲存能力,建立各式的設備相關推估模型,進而將推估模型下載至設備端,以執行不同的設備監控功能,如錯誤偵測、製造精度推估、剩餘壽命預測等。本研究實際在一個製造工廠中建構一個CNC工具機的製造精度估測系統,並與雲端建模服務系統整合。最後,本論文以數個實驗測試數據展示本雲端建模服務系統的效能,同時也一併探討此一創新的設備監控營運模式可能之效益。

    With the rapid development of information and network technology, cloud computing has become a new trend of Internet applications. If enterprises adopt cloud computing services, they not only can save the expensive costs of creating and maintaining information hardware themselves, but also can create novel business models to effectively increase the business benefits. Once the number of equipment becomes large, traditional Internet-based equipment monitoring systems (EMSs) may encounter the problem of computing and storage capability shortage, thereby reducing the system performance. For leveraging the advantages of cloud computing to improve the shortcomings of traditional EMSs, this study develops a cloud-based model creation service (CMCS) framework and its associated core mechanisms. Also, the Microsoft’s Windows Azure, a platform-as-a-service public cloud, is used to construct a CMCS system. By the CMCS system, many users can utilize the powerful computing and storage capacity of cloud computing via the Internet to create various equipment-related conjecture models, which can then be downloaded to the equipment side for performing different equipment monitoring functions, such as fault detection, production precision conjecture, remaining useful life prediction, etc. This study actually constructs a CNC-tool production precision conjecture system that is integrated with the CMCS system in a manufacturing factory. Finally, several experimental test data are used to demonstrate the performance of the proposed CMCS system. Also, the potential benefits of such a novel equipment-monitoring business model are explored.

    目錄 i 表目錄 iii 圖目錄 iv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 5 1.3 論文架構 7 第二章 雲端化設備監控系統框架 8 2.1 雲端虛擬供應商 (v-Supplier) 9 2.2 本地端虛擬機器 (v-Machine) 10 第三章 雲端建模服務需求分析 12 3.1 自動化虛擬量測系統與建模方法 12 3.2 雲端建模服務流程 15 3.3 雲端建模服務系統需求 16 3.3.1 演算法功能需求: 16 3.3.2 提供雲端資料蒐集功能: 18 3.3.3 具備可抽換式演算法模組: 18 3.3.4 提供Matlab資料型態轉換模組: 18 3.3.5 提供建模資料轉換模組: 18 3.3.6 提供資料同步機制: 19 3.3.7 提供網路服務的方式對外溝通: 19 第四章 雲端建模服務框架構設計 20 4.1 模型建立服務架構設計 20 4.2 資料蒐集模組設計 22 4.3 演算法模組設計 23 4.4 資料型態轉換模組設計 28 4.5 建模資料轉換模組設計 29 4.6 同步模組設計 30 4.7 服務通訊模組設計 33 第五章 系統實作與效能評估 36 5.1 部署環境 36 5.2 測試環境軟硬體規格 38 5.3 測試腳本 39 5.3.1 測試腳本A:Data Acquisition 40 5.3.2 測試腳本B:Model Creation 42 5.3.3 測試腳本C:Model Download 44 5.4 效能評估 45 5.5 微軟雲端環境價格比較 47 5.5.1 Compute 47 5.5.2 Storage 48 5.5.3 Data Transfer 49 5.5.4 SQL Azure 49 5.5.5 App Fabric 49 5.6 運作環境建置彈性比較 49 第六章 結論 51 6.1 研究成果與論文總結 51 6.2 未來研究方向 52 6.2.1 架構面 52 6.2.2 功能面 53 參考文獻 54

    [1] SEMI (Semiconductor Equipment and Material International). http://www.semi.org/
    [2] e-Diagnostics Guidebook, Revision 2.1, 2005. International SEMATECH: http://www.sematech.org/
    [3] M.-H. Hung, F.-T. Cheng, and S.-C. Yeh, “Development of a Web-Services-Based e-Diagnostics Framework for Semiconductor Manufacturing Industry,” IEEE Transactions on Semiconductor Manufacturing, Vol. 17, No. 5, pp. 122-135, February 2005.
    [4] F.-T. Cheng, Y.-C. Chang, H.-C. Huang, C.-A. Kao, Y.-L. Chen, and J.-L. Peng, “Benefit Model of Virtual Metrology and Integrating AVM into MES,” IEEE Transactions on Semiconductor Manufacturing, Vol. 24, Issue 2, pp. 261-272, May 2011.
    [5] T.-H. Pan, B.-Q. Sheng, D.S.-H. Wong, and S.-S. Jang, “A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model with Tools Clustering,” IEEE Transactions on Semiconductor Manufacturing, Vol. 7, Issue 2, pp. 187-195, May 2011.
    [6] J.V. Ringwood, S. Lynn, G. Bacelli, B. Ma, E. Ragnoli, and S. McLoone, “Estimation and Control in Semiconductor Etch: Practice and Possibilities,” IEEE Transactions on Semiconductor Manufacturing, Vol. 23, No. 1, pp. 87-98, Feb. 2010.
    [7] F.-T. Cheng, H.-C. Huang, and C.-A. Kao, “Dual-Phase Virtual Metrology Scheme,” IEEE Transactions on Semiconductor Manufacturing, Vol. 20, No. 4, pp. 566-571, July 2007.
    [8] T.-H. Lin, F.-T. Cheng, W.-M. Wu, C.-A. Kao, A.-J. Ye, and F.-C. Chang, “NN-Based Key-Variable Selection Method for Enhancing Virtual Metrology Accuracy,” IEEE Transactions on Semiconductor Manufacturing, Vol. 22, No 1, pp. 204-211, Feb. 2009.
    [9] Google Docs Web Site. URL:http://www.google.com/google-d-s/b1.html
    [10] F.-T. Cheng, Y.-T. Chen, Y.-C. Su, and D.-L. Zeng, “Evaluating Reliance Level of a Virtual Metrology System,” IEEE Transactions on Semiconductor Manufacturing, Vol. 21, No. 1, pp. 92-103, Feb. 2008.
    [11] Salesforce. URL: http://www.salesforce.com/
    [12] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” Vol 53, Issue 6, National Institute of Standards and Technology, Oct. 2009.
    [13] S.-Y. Yang, D.-L. Lee, and K.-Y. Chen, “A New Ubiquitous Information Agent System for Cloud Computing - Example on GPS and Bluetooth Techniques in Google Android Platform,” Electric Information and Control Engineering (ICEICE), pp.1929-1932, May 2011.
    [14] J. Li, M. Humphrey, D. Agarwal, K. Jackson, C.V. Ingen, and Y. Ryu, “eScience in the Cloud_A MODIS Statellite Data Reprojection and Reduction Pipeline in Windows Azure Platform,” in Proc. of 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, Georgia, USA, pp. 1-10, April 2010.
    [15] D. Chappell, “Introduction the Windows Azure,” D. Chappell Web Site. URL:http:// www.davidchappell.com/
    [16] C.-C. Liu, 「Virtual Metrology Model Creation Server Design and Implementation,」 Master Thesis, National Cheng Kung University, Tainan, Taiwan, ROC, Aug. 2008.
    [17] PDC2010 slides. URL:http://www.dotblogs.com.tw/regionbbs/archive/2010/12/13/vm.role.introduction.and.build.vhd.aspx
    [18] Microsoft Windows Azure Web Site. URL:http://www.microsoft.com/windowsazure/features/compute/
    [19] Y.-T. Huang and F.-T. Cheng, “Automatic Data Quality Evaluation For the AVM System,” IEEE Transactions on Semiconductor Manufacturing, Vol. 24, No. 3, 2011. (In Press)
    [20] Windows Azure Pricing. URL: http://www.microsoft.com/windowsazure/pricing/
    [21] 小朱的技術隨手寫. URL:http://www.dotblogs.com.tw/regionbbs/Default.aspx
    [22] 小朱,「Windows Azure教戰手扎」,基峯資訊出版社,2010年9月。
    [23] 李智樺,「Windows Azure雲端運算開發實戰」,悅知文化,2010年7月。
    [24] Windows MSDN Web Site. URL:http://msdn.microsoft.com/en-us/library/gg466226.aspx
    [25] S. Zhang, S. Zhang, X. Chen, and S. Wu, “Analysis and Research of Cloud Computing System Instance,” The Second International Conference on Future Networks ( ICFN), Qingdao, China, pp. 88-92, Jan. 2010.
    [26] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud Storage as the Infrastructure of Cloud Computing,” 2010 International Conference on Intelligent Computing and Cognitive Informatics (ICICCI), Kuala Lumpur , Malaysia, pp. 380-383, June 2010.
    [27] A. Li, X. Yang, S. Kandula, and M. Zhang, “ Comparing Public Cloud Providers,” IEEE Internet Computing Magazine, Vol. 15, No 2, pp. 50-53, Mar. 2011.

    無法下載圖示 校內:2013-09-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE