| 研究生: |
張硯翔 Chang, Yen-Hsiang |
|---|---|
| 論文名稱: |
以邊界應力控制標度槽探討長樁側推下之樁土互制反應 A study on the soil-pile interactions of a laterally loaded long pile with a Stress-Controlled Chamber |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 標度槽 、長樁模型 、樁土互制反應 、側向反覆加載 |
| 外文關鍵詞: | Calibration chamber, Long pile model, Soil-pile interaction, Cyclic lateral loading |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為求以本島的自然能源代替國外進口的非再生能源,因此離岸風機技術發展成為台灣所追求的目標。樁基礎為離岸風機主要採用基礎型式,離岸風機之基樁常年承受風力與波浪造成的側向載重,因此其受側向載重的行為,是設計時主要考量的因素。台灣西海岸為軟弱粉土質砂土層,加上颱風、地震侵襲,導致基樁受側向載重傳遞機制複雜,因此進行基樁側推相關實驗是必須的。為節省實驗成本與時間,本研究利用一原用於CPT標定之標度槽改良的模型基樁測試平台,模擬現地土壤應力狀態,有利於試體壓密時達到Ko狀態;在模型基樁側向加載時,降低試驗的邊界效應。研究利用氣霣法製作乾淨砂(硯港砂)試體,以及霧式霣落法製作麥寮砂試體,並以邊界應力控制標度槽模擬不同的邊界條件,進行長樁模型的側推與側向反覆加載試驗,探討樁土互制反應。
In wind turbine design, the long pile is a general option to provide lateral resistance under lateral loading. However, due to the earthquake and typhoons happen in the weastern coast of Taiwan, the mechanism of lateral load transfer is very complicated. In the study, a stress-controlled calibration chamber used on CPT test was modified to do the lateral loading pile tests, including push-over and cyclic loading tests. For reducing the boundary effect, the lateral stress was calculated by the numerical analyses and applied during the lateral loading tests, also, controlling vertical stress can simulate the stress condition in different depths. A model pile with strain gauges for bending strain measurement is fixed on the bottom of chamber and subjected to lateral loading. The bending moment, soil resistance and deflection calculated from the strain were used to develop the soil-pile interactions. Furthermore, in order to investgate the reactions during cyclic loading, the sine waves with different load amplitude were exerted on the pile head. From the test results, the bending moment and soil resistance will increase with the cycles until the soil-pile interaction becomes stable. Also, the cycle to be stable will decrease with the increase of the vertical stress.
1.林昌良(2011) “飽和砂中模型樁之側向載重試驗”,國立台灣大學土木工程學系,碩士論文
2.林承翰(2016)“以分層控制標度槽探討基樁於飽和粉土質砂中之側推行為”,國立成功大學土木工程學系,碩士論文
3.邱俊翔、陳正興、楊鶴雄(2008) “樁基礎非線性側推分析之樁材塑鉸設定方法” ,國家地震工程研究中心研究報告,No. 12。
4.胡哲銘(2011) “非飽和土壤標定系統之初期研發”,建國科技大學土木與防災研究所,碩士論文
5.許志瑋(2015) “基樁受側向載重之模型試驗設計與分析”,國立中央大學土木工程學系,碩士論文
6.張嘉偉(1997)“圓錐貫入試驗在粉砂中之標定”國立交通大學土木工程系,碩士論文。
7.葉事義(2015)“以邊界應力控制試驗平台探討基樁側推之行為”,國立成功大學土木工程學系,碩士論文
8.劉全修(2008)“台灣中南部粉土質細砂的壓縮性”國立交通大學土木
工程學系,碩士論文。
9.蕭廷翰(2017) “長樁模型於飽和粉土質砂中之反覆加載反應”,國立成功大學土木工程學系,碩士論文
10.API, R. (2007). 2A-WSD 2007. “Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design,American Petroleum Institute. ”
11.Broms, B. B. (1964). “Lateral resistance of piles in cohesive soils.” J. Soil Mech. Found. Div., 90(2), 123-156.
12.Byrne, B. (2011). “Foundation Design for Offshore Wind Turbines”, Géotechnique Lecture.
13.Chang, W. J., Chen, J.F., Ho, H.C., and Chiu, Y.F. (2010), “In Situ Dynamic Model Test for Pile-supported Wharf in Liquefied Sand “, ASTM Geotechnical Testing Journal, Vol. 33/3.
14.Choo, Y. and Kim, D. (2015). “Experimental Development of the p-y Relationship for Large-Diameter Offshore Monopiles in Sands: Centrifuge Tests.” J. Geotech. Geoenviron. Eng., 10.1061/(ASCE)GT.1943-5606.0001373, 04015058.
15.Hetenyi, M., (1946). “Beams on Elastic Foundation,” University of Michigan Press, Ann Arbor, Michigan.
16.Hsu, H.H., and Huang, A.B., (1998) “Development of an Axisymmetric Field Simulator for Cone Penetration Tests in Sand,” ASTM Geotechnical Testing Journal, Vol.21, No.4, pp. 348-355.
17.Huang, A.B., and Hsu, H.H. (2005). “Cone Penetration Tests under Simulated Field Conditions,” Geotechnique, Vol. No.5, pp. 345-354.
18.Huang, A.B., Chang, W.J., Hsu, H.H., Huang, Y.J., (2015). “A mist pluviation method for reconstituting silty sand specimens.” Engineering Geology, 188, pp. 1-9.
19.Leblanc, C., Houlsby, G. T., and Byrne, B. W. (2010). “Response of stiff piles in sand to long-term lateral loading.” Geotechnique 60. No. 2, 9-90.
20.Lee, J., Paik, K., Kim, D., and Park, D. (2012). “Estimation of ultimate lateral load capacity of piles in sands using calibration chamber tests.” Geotech. Test. J., 35(4), 1-12.
21.Lin, H., Ni, L., Suleiman, M., and Raich, A. (2015). “Interaction between Laterally Loaded Pile and Surrounding Soil.” J. Geotech. Geoenviron. Eng., 141(4), 04014119.
22.Long, J.H., and Vanneste, G., (1994) “Effects of cyclic lateral loads onpiles in sand.” Journal of Geotechnical Engineering, ASCE, Vol. 120, NO.1, pp. 225-244.
23.McClelland B., and Focht J. A. Jr., (1958), “Soil Modulus for Laterally Loaded Piles.Transactions.” ASCE 123: pp. 1049-1086.
24.Reese, L.C., Cox, W.R., and Koop, F.D., (1974), “Analysis of Laterally Loaded in Sand, Proceedings.” Six Annual OTC, Vol 2. Paper No. 2080, Houston, Texas.
25.Reese, L. C., and Van Impe, W.F., (2010) “Single pile and pile groups under lateral loading,2ndEdition”.
26.Wilson, D. (1998). “Soil-pile-superstructure interaction in liquefying sand
and soft clay.” Ph.D. dissertation, Univ. of California, Davis, Davis, CA.
27.Winkler, E. (1867). “Theory of elasticity and strength. Dominicus Prague.”
校內:2023-08-14公開