| 研究生: |
倪沅錩 Ni, Yuan-Chang |
|---|---|
| 論文名稱: |
熱壓燒結碳化鈦矽之微結構及機械性質之研究 Investigation of microstructure and mechanical properties of hot-pressed Titanium Silicon Carbide |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 碳化鈦矽 、熱壓燒結 、韋伯模數 |
| 外文關鍵詞: | Ti3SiC2, Weibull modulus, hot-pressed |
| 相關次數: | 點閱:47 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用不同莫耳比之Ti / Si / C原始粉末於1550℃,1atm氬氣及25MPa之機械壓力下進行熱壓燒結,探討燒結溫度、時間對於Ti3SiC2純度的影響。實驗結果顯示,以3Ti / 1.1Si / 2C比例混合之粉末於1550℃/30min燒結合成之Ti3SiC2相的純度最高,可達96.5 vol%。
取最高純度之Ti3SiC2燒結體試樣進行機械性質(硬度、強度)及可靠度(韋伯模數、耐熱震性)的分析。結果顯示硬度值會隨壓痕荷重增加而下降,趨近於3GPa;於低荷重時,壓痕周圍產生能量吸收機制:包括擴散微裂縫、層板破壞、個別晶粒脫層翹曲、糾結帶的形成、晶粒扭曲及晶粒推出等。另一特殊之處為Ti3SiC2經維氏硬度測試後,並無任何輻射裂痕產生(即使荷重加至50Kg)。Ti3SiC2之H/E比值為0.009,因此其部分機械性質相似於延性金屬。經四點彎曲試驗得知:Ti3SiC2之平均強度值為335±20MPa,觀察其破斷面,可發現此材料為具有奈米尺度的層狀結構。
本研究以水淬法量測試樣的耐熱震性,實驗結果顯示:Ti3SiC2試樣的臨界耐熱震溫度可達300℃, 其殘留強度隨淬火溫度升高而逐漸降低,當溫度升高至1000℃時,因為試棒表面產生TiO2氧化層,進而造成殘留強度提升。破壞韌性利用SENB方式量測,Ti3SiC2之KIC為7±0.3MPa‧m1/2。由水淬後的試片表面觀察Ti3SiC2之韌化機制,包含:裂縫轉折、晶粒架橋、層板滑移、沿晶及“沿層”破壞。Ti3SiC2試樣之韋伯模數為20,顯示材料對於缺陷的容忍度相當高,因此材料對於製程的可靠度佳。
Polycrystalline samples of Ti3SiC2 were prepared with different molar ratio of Ti / Si / C powders as starting materials, then hot-pressed at 1550℃ for 30minutes under mechanical pressure of 25MPa. Results show that sample made with 3Ti / 1.1Si / 2C molar ratio powders, sintered at 1550℃ for 30 minutes has highest purities of Ti3SiC2(96.5vol%).
Hardness of Ti3SiC2 decreases with the increasing loads and approaches to a value of 3 GPa. The damage energy absorption mechanisms around the indentation marker consist of microcrack, laminate fracture, buckling and delamination within grains, kink band formation. The H / E ratio of Ti3SiC2 is 0.09, suggesting that its mechanical properties is similar to ductile metal. No indentation cracks could be observed even at loads as high as 50Kg. The four-point bending strength of Ti3SiC2 is 335±20 MPa. The SEM fractographs show nano-scale laminate structure.
The critical thermal shock resistance temperature of Ti3SiC2 is close to 300℃. Retained strength of Ti3SiC2 decreases with the increasing quenching temperature. However, the retained strength of Ti3SiC2 at 1000℃ was increased due to the compressive stress by the formation of TiO2 at sample surface. The value of toughness is 7 ± 0.3 MPa‧m1/2. The fracture mechanisms observed from the sample surface after water queching test, included crack deflection, grain bridge, laminate glide, intergranular and “interlaminate” fracture. With the high Weibull modulus of 20, Ti3SiC2 is a defect-tolerant and high reliability material.
1. M. W. Barsoum and T. El-Raghy, “Synthesis and Characterization of a Remarkable Ceramic:Ti3SiC2,” J. Am. Ceram. Soc., 79[7], 1953-1956 (1996)
2. T. El-Raghy, A. Zavaliangos, M. W. Barsoum and S. R. Kalidindi, “Damage Mechanism around Hardness Indentation in Ti3SiC2,” J. Am. Ceram. Soc., 80[2], 513-516 (1997)
3. M. W. Barsoum and T. El-Raghy, “Oxidation Of Ti3SiC2 in Air,” J. Electrochem. Soc., 144[7], 2508-2516 (1997)
4. T. El-Raghy, M. W. Barsoum, A. Zavaliangos and S. R. Kalidindi, “Processing and Mechanical Properties of Ti3SiC2:Ⅱ, Effect of Grain Size and Deformation Temperature,” J. Am. Ceram. Soc., 82[10], 2855-2860 (1999)
5. J. Lis, Y. Miyamoto, R. Pampuch and K. Tanihata, “Ti3SiC2-based materials prepared by HIP-SHS techniques,” Materials Letters, 22, 163-168 (1995)
6. F. Goesmann and R. Schmid-Fetzer, “Metals on 6H-SiC : contact formation from the materials science point of view,” Mate. Sci. & Eng. B, 46, 357-362 (1997)
7. Yi Zhang, Z. Sun and Y. Zhou, “Cu/ Ti3SiC2 composite : a new electrofriction materials,” Mat. Res. Innovat., 3, 80-84 (1999)
8. L. Jaworska and M. Szutkowska, “Ti3SiC2 as a bonding phase in diamond composites,” J. Mate. Sci. Letters, 20, 1783-1786 (2001)
9.M. W. Barsoum, M. Radovic, P. Finkel and T. El-Raghy, “Ti3SiC2 and ice,” App. Phy. Letter, 79[4], 479-481 (2001)
10.M. W. Barsoum, “Ti3SiC2 has negligible thermopower,” Nature, 581-582 (2000)
11. W. Jeischko and H. Nowotny, “Die Kristallstuctur von Ti3SiC2-Ein Neuer Komplexcarbid- Typ,” Monatsch Chem., 98, 329-337 (1967)
12. T. Goto and T. Hirai, “Chemically Vapor Deposited Ti3SiC2,” Mat. Res. Bull., 22, 1195-1201 (1987)
13. S. Arunajatesan and A. H. Carim, “Synthesis of Titanium Silicon Carbide,” J. Am. Ceram. Soc., 78[3], 667-672 (1995)
14. Jing Feng Li, Fumiaki Sato and Ryuzo Watanabe, “Synthesis of Ti3SiC2 polycrystal by hot-isostatic pressing of the element powders,” J. Mate. Sci. Lette., 18, 1595-1597 (1999)
15.Y. Khoptiar and I. Gotman, “Synthesis of dense Ti3SiC2-based ceramics by thermal explosion under pressure,” J. Eur. Ceram. Soc., 23, 47-53 (2003)
16. Y. Zhou and Z. Sun, “Temperature fluctuation/hot pressing synthesis of Ti3SiC2,” J. Mate. Sci., 35, 4343-4346 (2000)
17.F. Goesmann, R. Wenzel and R. Schmid-Fetzer, “Preparation of Ti3SiC2 by Electron-Beam-Ignited Solid-State Reaction,” J. Am. Ceram. Soc., 81[11], 3025-3028 (1998)
18.J. Lsi, R. Pampuch, T. Rudnik and Z. Wegrzyn, “Reaction sintering phenomena of self-propagating high-temperature synthesis-derived ceramic powders in the Ti-Si-C system,” Solid State Ionics, 101-103 (1999)
19.F. Sato, J. F. Li and R. Watabe, “ Reaction Synthesis of Ti3SiC2 from Mixture of Elemental Powders,” Mate. Trans., JIM, 41[5], 605-608 (2000)
20.Z. Sun and Y. Zhou, “Fluctuation synthesis and characterization of Ti3SiC2 powders,” Mate. Res. Innovat, 2, 227-231 (1999)
21.Z. Sun, Y. Zhang and Y. Zhou, “Synthesis of Ti3SiC2 powder by a solid-liquid reaction process,” Scripta Materialia, 41[1], 61-66 (1999)
22.M. W. Barsoum, “The MN+1AXN Phases : A New Class of Solids ;Thermodynamically Stable Nanolaminates,” Prog. Solid St. Chem., 28, 201-281 (2000)
23.L. Farber, I. Levin, M. W. Barsoum, T. El-Raghy and T. Tzenov, “High-resolution transmission electron microscopy of some Tin+1AXn compounds ( n=1,2; A=Al or Si; X=C or N ) ,”J. App. Phy., 86[5], 2540-2543 (1999)
24.R. Yu, Q. Zhan, L. L. He, C. Zhou and H. Q. Ye, “Polymorphism of Ti3SiC2,” J. Mater. Res., 17[5], 948-950 (2002)
25. M. Amer, M.W. Barsoum, T. El-Raghy, I. Wiess, S. LeClair and D. Liptak, “The Raman spectrum of Ti3SiC2,” J. App. Phy., 84[10], 5817-5819 (1998)
26. D. Tabor, “Hardness of Metal,” Claredon Press, Oxford, 1951
27.B. R. Lawn and V. R. Howes, “Elastic recovery at hardness indentation,” J. Mate. Sci., 16, 2745-2752 (1981)
28.P. F. Becher, D. Lewis III, K. C. Karman and A. C. Gonzalez, “Thermal shock Resistance of Ceramics : Size and Geometry Effects in Quench Test,” J. Am. Ceram. Soc. Bull., 59[5], 542-548 (1980)
29.R. W. Davidge, Mechanical Behavior of Ceramics, Cambridge University Press, New York (1979)
30.D. P. H. Hasselman, “Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in brittle Ceramics,” J. Am. Ceram. Soc., 52[11], 600-604 (1969)
31.J. B. Walsh, “Effect of Cracks on the Compressibility of Rock,” J. Geophys. Res., 70[2], 381-389 (1965)
32.T. Anderson and D. J. Rowcliffe, “Indentation Thermal shock Test for Ceramics,” J. Am. Ceram. Soc., 79[6], 1509-1514 (1996)
33.M. Collin and D. Rowcliffe, “Analysis and Prediction of Thermal Shock in Brittle materials,” Acta. Mate., 48, 1655-1665 (2000)
34.J. C. Glandus and P. Boch, “Uncertainty on the Mean Strength and Weibull Modulus of an Alumina Batch as a function of the Number of samples,” J. Mate. Sci. Letter, 3, 74-76 (1984)
35.B. Berman, “Estimation of Weibull Parameters using a weight function,” J. Mate. Sci. Letter, 5, 611-614 (1986)
36.R. F. Cook and D. R. Clarke, “Fracture Stability, R-curves and Strength Variability,” Acta Metall., 36[3], 552-562 (1988)
37. L. H. Ho-Duc, Synthesis and Characteristic of the properties of Ti3SiC2/SiC and Ti3SiC2/TiC Composite, 2002
38. Erdong Wu, Erich H. Kisi, and Daniel P. Riley, “Intermediate Phases in Ti3SiC2 Synthesis from Ti/SiC/C Mixtures Studied by Time-Resolved Neutron Diffraction,” J. Am. Ceram. Soc., 85[12], 3084-3086 (2002)
39. Erdong Wu, Erich H. Kisi, “In Situ Neutron Powder Diffraction Study of Ti3SiC2 Synthesis,” J. Am. Ceram. Soc., 84[10], 2281-2288 (2001)
40. Krakow and Poland, “The role of liquid phase in solid combustion synthesis of Ti3SiC2,” Int. J. Mate. and Prod. Tech., 10[3-6], 316-324 (1995)
41. Tamer El-Raghy and M. W. Barsoum, “Diffusion kinetics of the carburization and silicidation of Ti3SiC2,” J. Appl. Phys., 83 [1], 1 January (1998)
42. D. Brodkin, S. Kalidindi, M. W. Barsoum and A. Zavaliangos, “Microstructural Evolution during Transient Plastic Phase Processing of Titanium Carbide-Titanium Boride Composite,” J. Am. Ceram. Soc., 79[7], 1945-1952 (1996)
43. Yong Du and Julius C. Schuster, “Experimental Investigation and Thermodynamic Calculation of the Titanium-Silicon-Carbon System,” J. Am. Ceram. Soc., 83[1], 197-203 (2000)
44.Tamer El-Raghy and Michel W. Barsoum, “Processing and Mechanical Properties of Ti3SiC2:I, Reaction Path and Microstructure Evolution,” J. Am. Ceram. Soc., 82[10], 2849-2854 (1999)
45. C. Racault, F. Langlais and R. Naslain, “Solid-State synthesis and characterization of the ternary phase Ti3SiC2,” J. Mat. Sci., 29, 3384-3392 (1994)
46. T. Okano, T. Yano and T. Iseki, “Synthesis and Mechanical Properties of Ti3SiC2 Ceramic,” Trans. Met. Soc. Jpn., 14A, 597 (1993)
47. M. W. Barsoum and T. El-Raghy, “A Progress Report on Ti3SiC2, Ti3GeC2, and the H-Phases, M2BX,” J. Mater. Synth. Process., 5[3], 197-216 (1997)
48. T. Fang, “Abnormal Grain Growth in Sintering Powder Compacts,” Scr. Metall., 22, 9-11 (1988)
49. J. RÖdel and A. Glaeser, “Anisotropy of Grain-Growth in Alumina,” J. Am. Ceram. Soc., 72 [11], 3292-3301 (1990)
50. S. Bennison and M. Harmer, “Grain-Growth Kinetics for Alumina in the absence of a Liquid Phase,” J. Am. Ceram. Soc., 68 [1], C-22-C-24 (1985)
51. It Meng Low, Seung Kun Lee, and Brain R. Lawn, “Contact Damage Accumulation in Ti3SiC2” J. Am. Ceram. Soc., 81 [1]225-228 (1998)
52. J. J. Nickl, K. K. Schweitzer and P. Luxenberg, “Gasphasenabscheidung im Systeme Ti-C-Si,” J. Less Common Met., 26, 283 (1972)
53. E. Orowan, Nature, 149, 463-464 (1942)
54. J. M. Molina-Aldareguia, J. Emmerlich, Jens-Petter Palmquist, U. Jansson, L. Hultman, “Kink formation around indents in laminated Ti3SiC2 thin film studied in the nanoscale,” Scripta Materialia, 49, 155-160 (2003)
55. R. Pampuch, J. Lsi, J. Piekarczyk and L. Stobierski, “Ti3SiC2-Based Materials Produced by Self-Propagating High-Temperature Synthesis (SHS) and Ceramic Processing,” J. Mater. Synth. Process., 1, 93 (1993)
56. F. Monteverde and A. Bellosi, “ High Oxidation Resistance of Hot-pressed Silicon Nitride Containing Yttria and Lanthania,” J. Eur. Ceram. Soc., 18, 2313-2321 (1998)
57. Y. G. Gogotsi and G. Grathwohl, “Stress-Enhances Oxidation of Silicon Nitride Ceramics,” J. Am. Ceram. Soc., 76[12], 3093-3104 (1993)
58. W. D. Kingery, “Factor Affecting Thermal Stress Resistance of Ceramic Materials,” J. Am. Ceram. Soc., 38[1], 3-15 (1955)
59. J. H. She, S. Scheppokat, R. Janssen and N. Claussen, “Reaction-Bonded Three-Layer Alumina-Based Composites with Improved Damage Resistance,” J. Am. Ceram. Soc., 81[5], 1374-1376 (1998)
60. Yiwang Bao and Zongzhe Jin, “Evaluation of K1c Depending on Sample size for Ceramics,” J. of Engineering Fracture Mechanics, 48[1], 85 (1994)
61. C. J. Gilbert, D. R.Bloyer, M.W. Barsoum, T. El-Raghy, A. P. Tomsia and R. O. Ritchie, “Fatigue-Crack growth and fracture properties of coarse and fine-grained Ti3SiC2,” Scripta mater., 42, 761-767 (2000)
62. N. F. Gao and Y. Miyamoto, “Dense Ti3SiC2 prepared by reactive HIP,” J. Mate. Sci., 34, 4386-4392 (1999).
63. Da Chen, K. Shirato, M. W. Barsoum, T. El-Raghy and R. O. Ritcie, “Cyclic Fatigue-Crack Growth and Fracture Properties in Ti3SiC2 Ceramic at Elevated Temperatures,” J. Am. Ceram. Soc., 84[12], 2914-2920 (2001)
64. M. Radovic, M. W. Barsoum, T. El-Raghy and S. Wiederhorn, “Tensile Creep of fine grained (3~5μm) Ti3SiC2 in the 1000-1200℃ temperature range,” Acta Materiala, 49, 4103-4112 (2001)
65. C. W. Li, D. J. Lee and S. C. Lui, “R-curve Behavior and Strength for In-situ-Reinforced Silicon Nitrides with different microstructure,” J. Am. Ceram. Soc., 75, 1777-1785 (1992)
66. J. F. Li, W. Pan, F. Sato and R. Watanabe, “Mechanical Properties of polycrystalline Ti3SiC2 at ambient and elevated temperature,” Acta materiala., 49, 937-945 (2001)