簡易檢索 / 詳目顯示

研究生: 林耀堂
Lin, Yao-Tang
論文名稱: 以椰殼炭與鐵礦進行碳熱還原之研究
Investigation of Carbothermic Reduction of Iron Ore with Coconut Charcoal
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 114
中文關鍵詞: 椰殼炭碳熱還原直接還原鐵RHF製程壓碎強度金屬化率(C/O)mol鹽基度
外文關鍵詞: Coconut charcoal, Carbothermic reduction, RHF process, Crushing strength, Metallization degree, (C/O)mol, Basicity
相關次數: 點閱:93下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的進步,鋼鐵需求量逐年上升,因此CO2的排放量也隨之上升;隨著溫室效應越來越嚴重以及環保意識的抬頭,鋼鐵業在CO2排放量上佔了很大的比例,自然首當其衝,面臨挑戰,也因此漸漸的各大鋼鐵業者紛紛轉向低碳煉鋼方面相關研究,另外,由於高品質煤礦含量的急速縮減,造成成本逐年上升,因此尋找一替代品亦是迫在眉睫的課題。

    本研究利用椰殼炭取代焦炭做為還原劑,以非高爐煉鐵中的旋轉床爐製程(Rotary Hearth Furnace, RHF)將其煉製成直接還原鐵(Direct Reduced Iron, DRI)後,並以不同配比與製程參數進行實驗,討論在不同參數下壓碎強度與金屬化率的關係。而DRI後續可做為高爐金屬加料進而增加鐵水產量或是其他用途。

    實驗結果發現,在固定反應條件下,壓碎強度會隨著碳氧摩爾比[(C/O)mol]的增加而上升,另外,當黏結劑的添加量上升時,壓碎強度也會大幅度的提升,當添加量達2.5wt%時,已達投入高爐之最低標準;而延長反應時間與提升反應溫度也都可讓(C/O)mol = 0.8這組的壓碎強度達到所需要求,(C/O)mol = 1這一配比則無法藉由參數調整達到所需之壓碎強度;另外,保護氣氛流量對於壓碎強度的影響於本實驗中的結果發現是幾乎沒有影響的。

    而在金屬化率方面,本研究之金屬化率並未如文獻般隨著(C/O)mol增加而上升,其數值呈現一較不規則分布;而黏結劑的添加量則對金屬化率影響不大;反應溫度與反應時間所得之結果也並未如預期結果獲得大幅度提升;而在保護氣氛流量方面,藉由保護氣氛流量的提升,減少再氧化現象的產生,對於(C/O)mol=1這組的金屬化率有約10%的提升;本實驗中之金屬化率均不如預期,原因有數項,但最後歸納其可能原因為分析時,樣品處理方式所造成。

    Due to the generational improvements, the demand for iron and steel has increased year after year. CO2 emission quantity has also risen along with this demand. With the greenhouse effect getting worse and consciousness about environmental protection becoming a serious consideration, the traditional iron and steel manufacturing industry faces a tremendous challenge owing to its huge contribution in the world’s CO2 emission. Therefore, in order to solve this problem, many iron and steel manufacture companies have searched for method to reduce carbon emission. In addition, the quantity of high-quality metallurgical coal has decreased and has become more expensive. In order to solve the problem of carbon emission and reduction of metallurgical coal, biomass charcoal was utilized to replace coke or coal as a reductant in recent years.

    In this investigation, coconut charcoal was used to replace coke as reductant, by simulating RHF process to produced direct reduced iron ( DRI ). For DRI, the primary purpose in ironmaking is added to blast furnace as a metallic feed which the strength and degree of metallization was restricted. Thus, different ratios of raw materials as well as process parameters were used to conduct the experiment and the relationships among the parameters, crushing strength and the degree of metallization were discussed.

    The results indicated that under fixed reaction conditions, crushing strength decreased while (C/O)mol increased due to the morphological shape and content of residual carbon. On the contrary, strength increased with addition of bentonite. As the addition of bentonite reaching 2.5 mass%, crushing strength achieve the lowest standard of metallic feed of blast furnace(0.6kg/mm2). For raising reaction time and temperature, crushing strength increased significantly when (C/O)mol was 0.8. However, crushing strength hardly varied when (C/O)mol was 1 with promotion of reduction time and temperature. Additionally, the protective atmosphere flow rate have extremely tiny effect on crushing strength in this investigation.

    The results of metallization degree were not the same as the literature on this topic has suggested, (an increase in (C/O)mol). In this study, the degree of metallization was a disorder distribution with raising (C/O)mol, and the addition of bentonite had a slightly effect on metallization degree. Besides, the results by extending reaction time and promoting temperature didn’t increase substantially as we expect. But, the degree of metallization could have 10% increment due to decreasing re-oxidation by raising the flow rate of protective atmosphere when (C/O)mol was 1. All the value of metallization degree in this investigation were not as high as those reference we mentioned in this study. The most probable reason which caused the low degree of metallization was the method of dealing sample before chemical composition analysis.

    摘要 I Abstract III 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 4 第二章 文獻回顧 12 2.1旋轉床爐製程介紹 12 2.2 碳熱還原反應機制與動力學分析 19 2.3生質炭應用於煉鐵製程分析 23 第三章 實驗方法與步驟 38 3.1 實驗原料 38 3.1.1 鐵礦 38 3.1.2 椰殼炭 38 3.1.3 助熔劑 39 3.1.4 黏結劑 40 3.2 實驗設備 40 3.2.1 原料前處理設備 40 3.2.2 配料成型設備 41 3.2.3 高溫爐、氣氛供給與冷卻系統 41 3.2.4 產品後處理設備 42 3.3 實驗分析方法 42 3.3.1 原料化學分析 42 3.3.2 產品化學分析 43 3.4 實驗步驟 46 3.4.1 原料前處理 46 3.4.2 配料、壓鑄成型與樣品乾燥 46 3.4.3模擬RHF製程之高溫碳熱還原實驗與後續分析 47 第四章 結果與討論 63 4.1 製程參數對直接還原鐵壓碎強度之影響 63 4.1.1 碳氧摩爾比對壓碎強度的影響 63 4.1.2 鹽積度(B2)對壓碎強度的影響 65 4.1.3 黏結劑添加量對於壓碎強度的影響 66 4.1.4 反應時間對壓碎強度的影響 68 4.1.5 反應溫度對壓碎強度的影響 70 4.1.6 保護氣氛流量對壓碎強度之影響 71 4.2製程參數對直接還原鐵金屬化率之影響 72 4.2.1 碳氧摩爾比與鹽積度對金屬化率的影響 72 4.2.2 黏結劑添加量對金屬化率的影響 73 4.2.3 反應時間與反應溫度對金屬化率的影響 74 4.2.4 保護氣氛流量對金屬化率的影響 75 4.2.5 金屬化率不佳之原因探討 76 第五章 結論 105 第六章 未來工作 107 參考文獻 108

    1. T. Harada and H. Tanaka, “Future Steelmaking Model by Direct Reduction Technologies”, ISIJ International, Vol.5, No. 8, pp. 1301-1307, (2011).
    2. 陳維新編撰,“生質物與生質能”,高立圖書有限公司,2008年9月
    3. IEA/OECD, “Key World Energy Statistics”, p 48-57, 2009
    4. Birat Jean Pierre編撰,“後京都(議定書)時代的鋼鐵工業與CO2排放問題”,中國鋼鐵年會論文集,2005年
    5. R. C. Gupta, “Wood Char as Sustainable Reduction for Ironmaking in the 21st Centry”, Mineral Processing and Extractive Metallurgy Review, vol. 24, p 203-231, (2003).
    6. M. Kumar and R. C. Gupta, “Industrial Uses of Wood Char”, Part A: Recovery, Utilization, and Environmental Effects, vol. 20, p575-589, (1998).
    7. 廖益廷編撰,“以生質炭為碳熱還原反應之還原劑的特性研究”,國立成功大學碩士論文,2010年7月
    8. 徐萌編撰,“轉底爐煤基熱風熔融煉鐵工藝的基礎性研究”,北京科技大學博士論文,2006年
    9. 蔡辛慈編撰,“新煉鐵製程法之介紹”,化工技術,第12卷第12期,2004年
    10. H. Oda, T. Ibaraki, and M. Takahashi, “Dust Recycling Technology by the Rotary Hearth Furnace,” Nippon Steel Technical Report, No. 86, pp. 30-34, (2002).
    11. H. Ichikawa and H. Morishige, “Rotary Hearth Furnace Process for Steel Mill Waste Recycling and Direct Reduced Iron Making,” Revue de Métallurgie, Vol. 100, No. 4, pp. 349-354, (2003).
    12. H. Ichikawa and H. Morishige, “Effective Use of steelmaking Dust and Sludge by Use of Rotary Hearth Furnace,” Nippon Steel Technical Report, No. 86, pp. 35-38, (2002).
    13. R. N. Dash and C. Das, “Recent Developments in Iron and Steel Making Industry,” Journal of Engineering Innovation and Research, Vol. 1, No. 1, pp. 23-33, (2009).
    14. R. Steffen and H.-B. Lüngen, “State of the Art Technology of Direct and Smelting Reduction of Iron Ores,” Revue de Métallurgie, Vol. 101, No. 10, pp. 171-182, (2004).
    15. H. Michishita and H. Tanaka, “Prospects for Coal-based Direct Reduced Process,” Kobe Steel Engineering Reports, Vol. 60, No. 1, pp. 22-28, (2010).
    16. H. Tsutsumi, S. Yoshida, and M. Tetsumoto, “Features of FASTMET Process,” Kobe Steel Engineering Reports, Vol. 60, No. 1, pp. 36-42, (2010).
    17. H. Tanaka, T. Harada, and S. Yoshida, “Study of Energy Consumption and Environmental Load by Coal-based Direct Reduction Iron-making Processes,” Kobe Steel Engineering Reports, Vol. 56, No. 2, pp. 27-31, (2006).
    18. B. Anameric and S. K. Kawatra, “Properties and Features of Direct Reduced Iron,” Mineral Processing & Extractive Metal. Rev., Vol. 28, pp. 59-116, (2007).
    19. 劉世賢,“一貫鋼廠固雜料碳熱還原反應性探討”,技術與訓練,Vol. 31, No. 2, pp. 56-65, (2006).
    20. F. Dahl, J. Brandberg, and D. Sichen, “Characterization of Melting of Some Slags in the Al2O3-CaO-MgO-SiO2 Quaternary System,” ISIJ International, Vol. 46, No. 4, pp. 614-616 (2006).
    21. Peng C., Zhang F., Li H., and Guo Z., “Removal of Zn, Pb, K and Na from Cold Bonded Briquettes of Metallurgical Dust in Simulated RHF,” ISIJ International, Vol. 49, No. 12, pp. 1874-1881, (2009).
    22. W. K. LU, “The Research for an Economical and Environmentally Friendly Ironmaking Process,” Metallurgical and Material Transactions B , Vol. 32, No.5, pp.757-762 , (2001).
    23. J. M. McClelland and G. E. Metius, “Recycling Ferrous and Nonferrous Waste Streams with FASTMET,” JOM, Vol. 55, No. 8, pp. 30-34, (2003).
    24. J. M. McClelland, H. Tanaka, T. Sugiyama, T. Harada, and H. Sugitatsu, “FASTMET® Dust Pellet Reduction Operations Report on the First FASTMET Waste Recovery Plant,” pp. 1-12, (2000).
    25. 劉彥麗,“淺談Fastmet煉鐵技術”,河北冶金,No. 5, pp. 3-4, 29, (2005).
    26. R.H. Hanewald and R.R. Bleakney, “Recovery of Metals From Steel Wastes and Production of DRI by the INMETCO Process,” Iron and Steel Engineers, Vol. 62, No. 3, pp. 62-67, (1985).
    27. H.C. Chuang, W.S. Hwang and S.H. Liu, “Effects of Basicity and FeO Content on the Softening and Melting Temperatures of the CaO-SiO2-MgO-Al2O3 Slag System,” Materials Transactions , Vol. 50, No. 6, pp. 1448-1456, (2009).
    28. 郭玉華、齊淵洪、王海風、周繼程,“發展我國旋轉床爐工藝需合理解決的關鍵技術”,煉鐵,Vol. 28, No. 4, pp 60-62, (2009).
    29. H. Oda, T. Ibaraki, and Y. Abe, “Dust Recycling System by the Rotary Hearth Furnace,” Nippon Steel Technical Report, No. 94, pp. 147-152, (2006).
    30. H. Ishikawa, J. Kopfle, J. Mcclelland, and J. Ripke, “Rotary Hearth Furnace Technologies for Iron Ore and Recycling Applications,” Archives of Metallurgy and Materials, Vol. 53, No. 2, pp. 541-545, (2008).
    31. L. Çamci, S. Aydin and C. Arslan,“Reduction of Iron Oxides in Solid Wastes Generated by Steelworks,” Turkish Journal of Engineering and Environmental Sciences, Vol. 26, pp. 37-44, (2002).
    32. 王定武,“旋轉床爐工藝生產直接還原鐵的現況和前景”,冶金管理,No. 12, pp. 53-55, (2007).
    33. 楊雙平、馮燕波、曹維成、李武紅,“直接還原技術的發展及前景”,甘肅冶金,Vol. 28, No. 1, pp. 7-10, (2006).
    34. 陰繼祥,“煤基直接還原技術的發展”,太原理工大學學報,Vol. 31, No. 3, pp. 314-315, 323, (2000).
    35. S. Halder and R. J. Fruehan, “Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants,” Metallurgical and Materials Transactions B, Vol. 39, No. 6, pp. 784-795, (2008).
    36. S. Halder and R. J. Fruehan, “Reduction of Iron-Oxide-Carbon Composites: Part II. Rates of Reduction of Composite Pellets in a Rotary Hearth Furnace Simulator,” Metallurgical and Materials Transactions B, Vol. 39, No. 6, pp. 796-808, (2008).
    37. S. Halder and R. J. Fruehan, “Reduction of Iron-Oxide-Carbon Composites: Part III. Shrinkage of Composite Pellets during Reduction,” Metallurgical and Materials Transactions B, Vol. 39, No. 6, pp. 809-817, (2008).
    38. T. Harada, O. Tsuge, I. Kobayashi, H. Tanaka, and H. Uemura, “The Development of New Iron Making Processes,” Kobelco Technology Review, No. 26, pp. 92-97, (2005).
    39. 朱榮、任江濤、劉綱、萬天驥及徐萌等編撰,“旋轉床爐工藝的發展與實踐”,第27卷第一期,2008年2月
    40. Peng C., Zhang F., Li H., and Guo Z.,” Removal Behavior of Zn, Pb, K and Na from Cold Bonded Briquettes of Metallurgical Dust in Simulated RHF” ISIJ International, Vol. 49, No. 12, pp. 1874–1881, (2009).
    41. Y. Jian, M. Tomoyuki and K. Mamoru,” Mechanism of Carbothermic Reduction of Hematite in Hematite–Carbon Composite Pellets” ISIJ International, Vol. 47, No. 10, pp. 1394–1400, (2007).
    42. 田中英年編撰,“最近の新製鉄法の動向と今後の展望”,西山記念技術講座,2008年
    43. Rolf Degel等編撰,“生產煤基的新一代旋轉床爐技術”,世界鋼鐵第3期,2000年
    44. K. Chikashi , H. Masahiko, K. H. Takazo, Y. eyuki , K. Yasuo,” Production of Direct Reduced Iron by a Sheet Material Inserting Metallization Method,” ISIJ International, Vol. 41, Supplement, pp. S13–S16, (2001).
    45. 劉世賢編撰,“一貫鋼廠固雜料碳熱還原反應特性探討”,技術與訓練,第31卷第2期,2006年6月
    46. R. J. Fruehan, “The Rate of Carburization of Iron in CO-H2 Atmospheres: Part I. Effect of Temperature and CO and H2-Pressures,” Metallurgical and Materials Transactions B, Vol. 4, No. 9, pp. 2123-2127, (1973).
    47. B. V. L'vov, “ Mechanism of Carbothermal Reduction of Iron, Cobalt, Nickel and Copper oxides,” Thermochimica Acta, Vol. 360, Issue. 2 , pp. 109-120, (2000).
    48. R. J. Fruehan, “The Rate of Reduction of Iron Oxides by Carbon,” Metallurgical and Materials Transactions B, Vol. 8, No. 1, pp. 279-287, (1977).
    49. H. Meyers, and R.F. Jennings, ‘‘Charcoal Iron Making: A Technical and Economic Reviews of Brazilian Experience,’’ SEAISI Quarterly, pp.38-80,(1979).
    50. 劉世賢、洪德賢及蔡辛慈編撰,“電弧爐碳熱還原之探討”,礦冶,第39卷第4期,1995年
    51. I. Sohn and R. J. Fruehan, “The Reduction of Iron Oxides by Volatiles in a Rotary Hearth Furnace Process: Part I. The Role and Kinetics of Volatile Reduction,” Metallurgical and Materials Transactions B, Vol. 36, No. 5, pp. 605-612, (2005).
    52. I. Sohn and R. J. Fruehan, “The Reduction of Iron Oxides by Volatiles in a Rotary Hearth Furnace Process: Part II. The Reduction of Iron Oxide/Carbon Composites,” Metallurgical and Materials Transactions B, Vol. 37, No. 2, pp. 223-229, (2006).
    53. I. Sohn and R. J. Fruehan, “The Reduction of Iron Oxides by Volatiles in a Rotary Hearth Furnace Process: Part III. The Simulation of Volatile Reduction in a Multi-layer Rotary Hearth Furnace Process,” Metallurgical and Materials Transactions B, Vol. 37, No. 2, pp. 231-238, (2006).
    54. R. J. Fruehan, “Sustainable Steelmaking Using Biomass and Waste Oxides”, AISI/DOE Technology Roadmap Program Final Report, (2004).
    55. 劉世賢“鋼鐵廠固雜料產出及其資源化技術介紹”,中工高雄會刊,第 18卷第2期,2010年
    56. Meyer K., Pelletizing of Iron Ores, Springer-Verlag, Berlin, pp. 292, (1980).
    57. R.C. Gupta and J. P. Gautam, “The Effect of Additives and Reductants on the Strength of Reduced Iron Ore Pellet,” ISIJ International, Vol. 43, No. 12, pp. 1913–1918, (2003).
    58. R. C. Gupta, J. P. Gautam, and S. Mohan, “Water Hyacinth Char Addition in Iron Ore Pellet: An Exploratory Study,” ISIJ International, Vol. 43, No. 2, pp. 259-261, (2003).
    59. Takano C. and Mourao M. B., “Comparison of High Temperature Behavior of Self-Reducing Pellets Produced from Iron Ore with that of Dust from Sintering Plant,” ISIJ International, Vol. 41, Supplement, pp. S22-S26, (2001).
    60. Takano C. and Mourao M. B., “Self-Reducing Pellets for Ironmaking: Mechanical Behavior,” Mineral Processing & Extractive Metallurgical Revolution , Issue 3-4 , pp.233-252, (2003).
    61. D. Srinivas, P. K. Gupta and S. M. Rao, “Prediction of Iron Ore Pellet Strength Using Artificial Neural Network Model,” ISIJ International, Vol. 47, No. 1, pp. 67-72, (2007).
    62. 張旭,張健良等人”鐵碳複合球團直接還原試驗研究”,礦冶工程學報,Vol.29, No.2 , pp.55-58, (2009).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE