簡易檢索 / 詳目顯示

研究生: 陳昭丞
Chen, Zhao-Cheng
論文名稱: 吉利丁/銀複合奈米絲線應用於光感測器之研究
The Study of Gelatin/Silver Composite Nanofibers for Photodetector Application
指導教授: 張御琦
Chang, Yu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 45
中文關鍵詞: 光感測器奈米絲線旋轉紡絲噴射吉利丁
外文關鍵詞: photodetector, nanofiber, rotary jet spin, gelatin, silver
相關次數: 點閱:66下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這環保及性能並重的時代,有機光電感測器的發展日益蓬勃。生物高分子材料-吉利丁具有良好的機械性質且可低溫溶液式製程,因此已廣泛用於有機記憶電子元件領域。但吉利丁於光感測元件的應用,因受限於吉利丁膜對光無感測能力,因此較少研究探討。
    因此本研究透過金屬鹽類-硝酸銀的添加,提高吉利丁光感測元件對光的響應。另外,亦透過絲線射出技術,製作出吉利丁/銀複合奈米絲線,由於絲線結構,感應膜層體表面積急劇擴大,可提高光在材料內的機率,進一步提升光感測元件的性能。除此之外,為了提升吉利丁/銀複合奈米絲線的線徑可控制性和分布均勻性,本研究亦將原本棉花糖機設備重新改造設計,透過改良後的絲線射出設備製作線徑為400奈米的吉利丁/銀複合奈米絲線,並有效地提升光感測性能,為吉利丁於有機光電元件的發展提供多一種可能。

    *作者, **指導教授
    關鍵字:光感測器、奈米絲線、旋轉紡絲噴射、吉利丁、銀

    In this era of environmental protection and performance, the development of organic photoelectric sensors is advancing. The biopolymer material gelatin has good mechanical properties and can be processed in low-temperature solutions, and thus, it has been widely used in the field of organic memory electronic devices. However, the application of gelatin in light-sensing components is limited by the gelatin film’s incapability to sense light, resulting in limited research and discussion.
    Therefore, in this study, whether the addition of metal salt–silver nitrate can improve the response of the gelatin photo-sensing element to light was investigated. In addition, the gelatin/silver composite nanowire was produced through thread injection technology. Given the thread structure, the surface area of the sensing film layer was greatly expanded, which can increase the probability of light in the material and further improve the performance of the light-sensing element. In addition, to improve the wire diameter controllability and distribution uniformity of the gelatin/silver composite nanowire, we redesigned the original cotton candy machine equipment and determined the wire diameter through the improved wire injection equipment. The 400 nm gelatin/silver composite nanowire can effectively improve the light-sensing performance, providing another possibility for the development of gelatin in organic optoelectronic devices.

    *Author, **Advisor
    Keywords: photodetector, nanofiber, rotary jet spin, gelatin, silver

    摘要 I Abstract (in English) II 誌謝 III Contents IV Figure Captions VII Table Captions IX Chapter 1 Introduction 1 1.1 Photodetector 1 1.1.1 Photoconductor 1 1.1.2 Photodiode 2 1.2 Organic Photodetector 3 1.3 Gelatin 3 1.4 Metallic Salt 4 1.5 One-Dimensional Structure 4 1.6 Newly Developed Rotary Jet Spinning Equipment 5 1.7 Motivation 6 1.8 Dissertation Organization 7 Chapter 2 Experiment Details 8 2.1 Solution Preparation 8 2.2 Device Fabrication 8 2.2.1 Substrate Cleaning 8 2.2.2 Fabrication Process 9 2.2.3 Deposition of Electrode 12 2.3 Experiment Equipment 13 2.3.1 Magnetic Stirrer 13 2.3.2 Cotton Candy Machine 14 2.3.3 Design of Rotary Jet Spinning 15 2.3.4 Magnetron Sputter 18 2.4 Measurements Equipment 19 2.4.1 Scanning Electron Microscope (SEM) 19 2.4.2 X-ray Photoelectron Spectroscopy (XPS) 20 2.4.3 Fourier-transform Infrared Spectroscopy (FTIR) 21 2.4.4 Ultraviolet–Visible Spectroscopy (UV-VIS) 22 2.4.5 Keithley Instruments 2636B 23 Chapter 3 Results and Discussion 24 3.1 40 mm Gelatin/AgNO3 Fiber 24 3.1.1 Physical Properties 24 3.1.1.1 SEM Morphology Images 24 3.1.1.2 Chemical Composition Analysis 24 3.1.1.3 Functional Groups Analysis 26 3.1.1.4 Optical Characterization 27 3.1.2 Electrical Properties of of Gelatin/AgNO3 Fiber 28 3.1.2.1 I-V Curve in Different Wavelength Light 28 3.1.2.2 Time-Dependent Photoresponse of Different Concentration 29 3.1.2.3 Rise time & Decay time 30 3.1.2.4 Responsivity 31 3.2 400 nm Gelatin/AgNO3 Fiber 32 3.2.1 SEM Morphology Images 32 3.2.2 Time-Dependent Photoresponse of 400 nm Gelatin Fiber/AgNO3 32 3.2.3 Rise Time & Decay Time 33 3.3 Comparison of Different Structure & Fiber Diameter 34 3.4 Conduction Mechanism 35 Chapter 4 Conclusions and Future Prospects 37 4.1 Conclusions 37 4.2 Future Prospects 37 References 39

    [1] Zhang, X., Liu, X., Sun, B., Ye, H., He, C., Kong et al. & Liu, Z. Broadening the Spectral Response of Perovskite Photodetector to the Solar-Blind Ultraviolet Region through Phosphor Encapsulation. ACS Applied Materials & Interfaces, 13(37), 44509-44519, 2021.
    [2] Baev, S. S., Konyakhin, I. A., Korotaev, V. V., Kuzmin, V. N., Maraev, A. A., & Tomskiy, K. A. Choice of optimal resolution and array for integrated photosynthetically active radiation spectroradiometer. In Tenth International Symposium on Precision Engineering Measurements and Instrumentation. International Society for Optics and Photonics, 2019.
    [3] Xu, X., Chen, J., Cai, S., Long, Z., Zhang, Y., Su, L. et al. & Fang, X. A real‐time wearable UV‐radiation monitor based on a high‐performance p‐CuZnS/n‐TiO2 photodetector. Advanced Materials, 30(43), 1803165, 2018.
    [4] Niaz, M., Klassen, S., McMillan, B., & Metz, D. Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94(5), 903-931, 2010.
    [5] Word, R. C., Fitzgerald, J., & Könenkamp, R. Photoelectron emission control with polarized light in plasmonic metal random structures. Applied Physics Letters, 99(4), 041106, 2011.
    [6] Lee, H., Nam, S., Kwon, H., Lee, S., Kim, J., Lee, W.et al. & Kim, Y. Solution-processable all-small molecular bulk heterojunction films for stable organic photodetectors: near UV and visible light sensing. Journal of Materials Chemistry C, 3(7), 1513-1520, 2015.
    [7] Ng, T. N., Wong, W. S., Lujan, R. A., & Street, R. A. Characterization of charge collection in photodiodes under mechanical strain: comparison between organic bulk heterojunction and amorphous silicon. Advanced Materials, 21(18), 1855-1859, 2009.
    [8] Ahmad, Z., Sayyad, M. H., Yaseen, M., Aw, K. C., M-Tahir, M., & Ali, M. Potential of 5, 10, 15, 20-Tetrakis (3′, 5′-di-tertbutylphenyl) porphyrinatocopper (II) for a multifunctional sensor. Sensors and Actuators B: Chemical, 155(1), 81-85, 2011.
    [9] Kim, D. H., Heo, S. J., Shin, J. W., Mun, C. W., Park, K. M., Park, K. D., & Jee, K. S. Preparation of thermosensitive gelatin-pluronic copolymer for cartilage tissue engineering. Macromolecular research, 18(4), 387-391, 2010.
    [10] Esteves, C., Santos, G. M., Alves, C., Palma, S. I., Porteira, A. R., Costa, H. M. et al. & Roque, A. C. Effect of film thickness in gelatin hybrid gels for artificial olfaction. Materials Today Bio, 1, 100002, 2019.
    [11] Sahoo, N., Sahoo, R. K., Biswas, N., Guha, A., & Kuotsu, K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. International journal of biological macromolecules, 81, 317-331, 2015.
    [12] Goos, R. J., Johnson, B. E., Peterson, R. A., & Kobes, N. Effect of sugarbeet by-products on the solubility and availability of ferrous sulfate in soil. Journal of sugar beet research, 38(2), 153-172, 2001.
    [13] Chang, J., & Barbour, R. L. Factors influencing development, utility, and new directions in medical imaging: from magnetic resonance to x-rays. In Computational, Experimental, and Numerical Methods for Solving Ill-Posed Inverse Imaging Problems: Medical and Nonmedical Applications. International Society for Optics and Photonics, 1997.
    [14] Król-Gracz, A., Michalak, E., Nowak, P. M., & Dyonizy, A. Photo-induced chemical reduction of silver bromide to silver nanoparticles. Central European Journal of Chemistry, 9(6), 982-989, 2011.
    [15] Oliveira, F., Fischer, I. A., Benedetti, A., Zaumseil, P., Cerqueira, M. F., Vasilevskiy, M. I. et al. & Schulze, J. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy. Applied Physics Letters, 107(26), 262102, 2015.
    [16] Zhao, Y., Li, C., & Shen, L. Recent research process on perovskite photodetectors: A review for photodetector—materials, physics, and applications. Chinese Physics B, 27(12), 127806, 2018.
    [17] Lupan, O., Chow, L., Chai, G., Chernyak, L., Lopatiuk‐Tirpak, O., & Heinrich, H. Focused‐ion‐beam fabrication of ZnO nanorod‐based UV photodetector using the in‐situ lift‐out technique. physica status solidi (a), 205(11), 2673-2678, 2008.
    [18] Wu, W., Li, Y., Liang, L., Hao, Q., Zhang, J., Liu, H., & Liu, C. Enhanced broadband responsivity of Ni-doped Sb2Se3 nanorod photodetector. The Journal of Physical Chemistry C, 123(23), 14781-14789, 2019.
    [19] Zheng, Z., Gan, L., & Zhai, T. Electrospun nanowire arrays for electronics and optoelectronics. Science China Materials, 59(3), 200-216, 2016.
    [20] Dai, X., Zhang, S., Wang, Z., Adamo, G., Liu, H., Huang, Y. et al. & Soci, C. GaAs/AlGaAs nanowire photodetector. Nano letters, 14(5), 2688-2693, 2014.
    [21] Ouyang, W., Teng, F., & Fang, X. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self‐induced inner electric fields in the BiOCl nanosheets. Advanced Functional Materials, 28(16), 1707178, 2018.
    [22] Christen, A. G., & Christen, J. A. William J. Morrison: co-inventor of the cotton candy machine. Journal of the history of dentistry, 53(2), 51-56, 2005.
    [23] Badrossamay, M. R., McIlwee, H. A., Goss, J. A., & Parker, K. K. Nanofiber assembly by rotary jet-spinning. Nano letters, 10(6), 2257-2261, 2010.
    [24] Ren, L., Ozisik, R., Kotha, S. P., & Underhill, P. T. Highly efficient fabrication of polymer nanofiber assembly by centrifugal jet spinning: process and characterization. Macromolecules, 48(8), 2593-2602, 2015.
    [25] Zander, N. E. Formation of melt and solution spun polycaprolactone fibers by centrifugal spinning. Journal of Applied Polymer Science, 132(2), 2015.
    [26] J. Agrawal, T. Dixit, I. A. Palani, and V. Singh, “Development of reliable and high responsivity ZnO-based UV-C photodetector,” IEEE J. Quantum Electron., 2020.
    [27] D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, R. Adelung, Adv. Mater., 26, 1541, 2014.
    [28] L. X. Zheng, K. Hu, F. Teng, X. S. Fang, Small, 13, 1602448, 2017.
    [29] X. S. Fang, L. F. Hu, K. F. Huo, B. Gao, L. J. Zhao, M. Y. Liao, P. K. Chu, Y. Bando, D. Golberg, Adv. Funct. Mater. 21, 3907, 2011.
    [30] Zander, N. E. Formation of melt and solution spun polycaprolactone fibers by centrifugal spinning. Journal of Applied Polymer Science, 132(2), 2015.
    [31] Loordhuswamy, A. M., Krishnaswamy, V. R., Korrapati, P. S., Thinakaran, S., & Rengaswami, G. D. V. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology. Materials Science and Engineering: C, 42, 799-807, 2014.
    [32] Vida, T. A., Motta, A. C., Santos, A. R., Cardoso, G. B. C., Brito, C. C. D., & Zavaglia, C. A. D. C. Fibrous PCL/PLLA scaffolds obtained by rotary jet spinning and electrospinning. Materials Research, 20, 910-916, 2018.
    [33] Loordhuswamy, A. M., Krishnaswamy, V. R., Korrapati, P. S., Thinakaran, S., & Rengaswami, G. D. V. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology. Materials Science and Engineering: C, 42, 799-807, 2014.
    [34] Buzgo, M., Rampichova, M., Vocetkova, K., Sovkova, V., Lukasova, V., Doupnik, M. & Amler, E. Emulsion centrifugal spinning for production of 3D drug releasing nanofibres with core/shell structure. RSC advances, 7(3), 1215-1228, 2017.
    [35] Kwak, H. W., Kim, J. E., & Lee, K. H. Green fabrication of antibacterial gelatin fiber for biomedical application. Reactive and Functional Polymers, 136, 86-94, 2019.
    [36] Ouyang, W., Teng, F., & Fang, X. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self‐induced inner electric fields in the BiOCl nanosheets. Advanced Functional Materials, 28(16), 1707178, 2018.
    [37] Badrossamay, M. R., McIlwee, H. A., Goss, J. A., & Parker, K. K. Nanofiber assembly by rotary jet-spinning. Nano letters, 10(6), 2257-2261, 2010.
    [38] Basta, M., Witkowski, B. S., Godlewski, M., & Kuznicki, Z. T. Nanolayers of a PV metamaterial buried within a single crystal Si: SEM and reflectivity observations. In SPIE Eco-Photonics: Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future. International Society for Optics and Photonics, 2011.
    [39] Walock, M. J. Nanocomposite coatings based on quaternary metal-nitrogen and nanocarbon systems. The University of Alabama at Birmingham, 2012.
    [40] L'H, Y., & Mireles, L. K. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF SIMS). In Characterization of polymeric biomaterials. Woodhead Publishing, 2017.
    [41] Escudero-Escribano, M. Electrocatalysis and surface nanostructuring: atomic ensemble effects and non-covalent interactions, 2011.
    [42] Mohanta, D. A Detailed Study on Optical and Physical Properties of Rice and its by-Products (Doctoral dissertation, Tezpur University), 2017.
    [43] Zhang, Q., Xie, G., Xu, M., Su, Y., Tai, H., Du, H., & Jiang, Y. Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sensors and Actuators B: Chemical, 259, 269-281, 2018.
    [44] Lin, D., Wu, H., Zhang, R., & Pan, W. Enhanced photocatalysis of electrospun Ag−ZnO heterostructured nanofibers. Chemistry of Materials, 21(15), 3479-3484, 2009.
    [45] Chen, M. C., Chang, T. C., Huang, S. Y., Chang, G. C., Chen, S. C., Huang, H. C. et al. & Tsai, M. J. Influence of oxygen partial pressure on resistance random access memory characteristics of indium gallium zinc oxide. Electrochemical and Solid State Letters, 14(12), H475, 2011.
    [46] Lee, C. J., Chang, Y. C., Wang, L. W., & Wang, Y. H. Nonvolatile resistive switching memory utilizing cobalt embedded in gelatin. Materials, 11(1), 32, 2018.
    [47] Zhang, Q., Xie, G., Xu, M., Su, Y., Tai, H., Du, H., & Jiang, Y. Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sensors and Actuators B: Chemical, 259, 269-281, 2018.
    [48] Abdelaziz, M., & Abdelrazek, E. M. Effect of dopant mixture on structural, optical and electron spin resonance properties of polyvinyl alcohol. Physica B: Condensed Matter, 390(1-2), 1-9, 2007.
    [49] Selim, M. S., Seoudi, R., & Shabaka, A. A. Polymer based films embedded with high content of ZnSe nanoparticles. Materials Letters, 59(21), 2650-2654, 2005.
    [50] Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J., & Yoo, C. G. Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Applied Sciences, 10(12), 4345, 2020.
    [51] Dhar, J., & Patil, S. Self-assembly and catalytic activity of metal nanoparticles immobilized in polymer membrane prepared via layer-by-layer approach. ACS applied materials & interfaces, 4(3), 1803-1812, 2012.
    [52] Vaghasiya, T. K. The Study of Change in Optical Properties of Highly AgNO3 Doped Poly Vinyl Alcohol Hydrosol. In Nano Hybrids and Composites. Trans Tech Publications Ltd, 2017.
    [53] Werten, M. W., Wisselink, W. H., Jansen-van den Bosch, T. J., de Bruin, E. C., & de Wolf, F. A. Secreted production of a custom-designed, highly hydrophilic gelatin in Pichia pastoris. Protein engineering, 14(6), 447-454, 2001.
    [54] Kumar, R. M., Rao, B. L., Asha, S., Narayana, B., Byrappa, K., Wang, Y. et al. & Sangappa, Y. (2015). Gamma radiation assisted biosynthesis of silver nanoparticles and their characterization. Adv. Mater. Lett, 6(12), 1088-1093.
    [55] Mukul, M., Devi, N., Sharma, S., Tripathi, S. K., & Rani, M. Synthesis and study of TiO2/CuO core shell nanoparticles for photovoltaic applications. Materials Today: Proceedings, 28, 1382-1385, 2020.
    [56] Shao, D., Gao, J., Chow, P., Sun, H., Xin, G., Sharma, P. et al. & Sawyer, S. Organic–inorganic heterointerfaces for ultrasensitive detection of ultraviolet light. Nano letters, 15(6), 3787-3792, 2015.

    下載圖示 校內:2024-01-22公開
    校外:2024-01-22公開
    QR CODE