| 研究生: |
王亦恩 Wang, Yi-En |
|---|---|
| 論文名稱: |
商業機械手臂之切鋸運動指令生成與控制 Motion Command Generation and Sawing Control Using Commercial Robots |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 刀具加工軌跡分析 、力量感測器 、STL檔案 、切鋸運動指令生成 |
| 外文關鍵詞: | tool path analysis, force sensor, STL file, sawing motion command generation |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
提起加工時,一般想到的會是車床、銑床等進行直線運動的工具機,若要製造較複雜的工件,則會使用CNC多軸工具機,然而,若以多軸CNC製造傳統老師傅手工製作的工藝品,卻有點把問題複雜化了,因此,本文以STL作為3D圖形檔案,提出新的計算刀具加工路徑方法,並將機械手臂與力量感測器結合,使機械手臂可以在依照計算出來的加工軌跡運動的同時,也能根據感測器數值而有相對應的運動,若感測器的值超過設定閥值,刀具則會沿著原加工路徑退後,避免刀具及機械手臂因為力量過大而損壞。
The purpose of this paper is to integrate 3D design and process. After importing 3D STL file, the trajectory of the robot arm can be generated automatically via the two proposed methods, the contour projection method and the coordinate transformation method. With additional force sensors, the machining force could be calculated. If the force is too large, then the robot will have the corresponding movement.
In the experiment, we could find that when the sensor force is over the threshold, the robot will go backward, which decreases the force. And the final product is similar to the 3D graph drawn by drawing software, which shows that the method proposed in this article is feasible and practical.
Brugnaro, G. and S. Hanna (2017). Adaptive robotic training methods for subtractive manufacturing. Proceedings of the 37th annual conference of the association for computer aided design in architecture (ACADIA), Acadia Publishing Company.
Brugnaro, G. and S. Hanna (2019). Adaptive Robotic Carving: Training Methods for the Integration of Material Performances in Timber Manufacturing. Robotic Fabrication in Architecture, Art and Design 2018, Springer: 336-348.
Denavit, J. and R. S. Hartenberg (1955). "A kinematic notation for lower-pair mechanisms based on matrices."
Duan, J., et al. (2018). "Adaptive variable impedance control for dynamic contact force tracking in uncertain environment." Robotics and Autonomous Systems 102: 54-65.
Duenser, S., et al. (2020). "Robocut: Hot-wire cutting with robot-controlled flexible rods." ACM Transactions on Graphics (TOG) 39(4): 98: 91-98: 15.
Gramazio, F., et al. (2010). "Encoding material." Architectural Design 80(4): 108-115.
Hattab, A. and G. Taubin (2019). Rough carving of 3D models with spatial augmented reality. Proceedings of the ACM Symposium on Computational Fabrication.
Hogan, N. (1985). "Impedance Control: An Approach to Manipulation: Part I—Theory." Journal of Dynamic Systems, Measurement, and Control 107(1): 1-7.
Hogan, N. (1985). "Impedance Control: An Approach to Manipulation: Part II—Implementation." Journal of Dynamic Systems, Measurement, and Control 107(1): 8-16.
Hogan, N. (1985). "Impedance Control: An Approach to Manipulation: Part III—Applications." Journal of Dynamic Systems, Measurement, and Control 107(1): 17-24.
Ma, Z., et al. (2021). "Stylized Robotic Clay Sculpting." Computers & Graphics.
Raibert, M. H. and J. J. Craig (1981). "Hybrid Position/Force Control of Manipulators." Journal of Dynamic Systems, Measurement, and Control 103(2): 126-133.
Raspall, F., et al. (2014). Material feedback in robotic production. Robotic Fabrication in Architecture, Art and Design 2014, Springer: 333-345.
Song, P., et al. (2017). Impedance control of robots: an overview. 2017 2nd international conference on cybernetics, robotics and control (CRC), IEEE.
Stone, H., et al. (1986). Arm signature identification. Proceedings. 1986 IEEE International Conference on Robotics and Automation, IEEE.
上銀科技股份有限公司 "RA605-710-GC 關節式機器手臂."