簡易檢索 / 詳目顯示

研究生: 徐仲亭
Hsu, Chung-Ting
論文名稱: 磁液動自然對流與渦漩不穩定性分析
The Natural Convection and Vortex Instability of Magnetohydrodynamic Flow
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 165
中文關鍵詞: 磁液動自然對流渦漩不穩定
外文關鍵詞: Magnetohydrodynamics, natural convection, vortex instability
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討磁液動自然對流流場的熱傳特性與渦漩不穩定性分析,研究範圍包括磁場效應對鄰近水平板壁面自然對流流場及其渦漩不穩定性的影響與霍爾效應對非達西多孔性介質鄰近垂直板壁面磁液動自然對流流場性能的影響。研究內容包括下列四個主題:(1) 考慮慣性效應之多孔性介質鄰近水平板壁面磁液動自然對流流場及其渦漩不穩定性分析。(2) 考慮輻射與非達西效應之多孔性介質鄰近水平板壁面磁液動自然對流流場及其渦漩不穩定性分析。(3) 霍爾效應(Hall effect)對非達西多孔性介質鄰近垂直板壁面磁液動自然對流流場性能分析。(4) 考慮黏滯逸散(viscous dissipation)及焦耳加熱(Joule heating)效應之一般流體鄰近水平板壁面磁液動自然對流流場及其渦漩不穩定性分析。

    考慮慣性效應之多孔性介質鄰近水平板壁面磁液動自然對流流場,其基本流場統御方程式為一組常微分方程式組,存在相似解(similarity solution),使用郎吉-庫塔(Runge-Kutta)積分法配合射擊法(shooting method) 求解。考慮輻射與非達西效應之多孔性介質鄰近水平板壁面、霍爾效應對非達西多孔性介質鄰近垂直板壁面與考慮黏滯逸散及焦耳加熱效應之一般流體鄰近水平板壁面的磁液動自然對流流場,均無相似解存在,本文採用凱拉盒子(Keller Box)數值方法求解。關於渦漩不穩定性分析,則採用線性穩定理論(linear stability theory)和局部相似假設(local similarity method) 推導擾動流場統御方程式,再使用郎吉-庫塔(Runge-Kutta)積分法及葛雷-史密德(Gram-Schmidt)正交技術求出中性穩定曲線(neutral stability curves)、臨界雷利數(Rayleigh number)、臨界葛雷秀夫數 (Grashof number)及臨界波數(wave number)

    由數值分析結果得知:(1)多孔性介質鄰近水平板壁面磁液動自然對流流場中,當邊界為等熱通量時,基本流場存在相似解。(2)在鄰近水平板壁面一般流體或多孔性介質流場中,磁場效應降低熱傳率,並使流場趨向不穩定。(3)在鄰近水平板壁面多孔性介質流場中,輻射效應提高切線速度,使溫度邊界層變薄,並使流場趨向穩定。(4) 在強磁場環境下,霍爾效應使流體沿垂直板壁面產生側向流動,流場變成了三維流場。(5) 霍爾效應使流體切線速度(tangential velocity)提高,但側向速度(lateral velocity)則隨霍爾參數增大,先增加而後再下降。(6) 在鄰近水平板壁面一般流體磁液動流場中,考慮黏滯逸散及焦耳加熱效應,流場切線速度增加,熱傳率下降,流場趨向不穩定。

    Two main problems have been studied in this paper:First, magnetic effects on the flow and vortex instability of natural convection boundary layer flow over a horizontal plate are investigated;second,Hall effect on an electrically conducting fluid in magnetohydrodynamics (MHD) natural convection boundary layer past a vertical plate in porous medium are examined. The present investigated includes:(1) Magnetic and inertia effects on the vortex instability of natural convection flow over a horizontal plate in a saturated porous medium. (2) Radiation and non-Darcy effects on the vortex instability of MHD natural convection flow over a horizontal plate in a saturated porous medium. (3) Hall effect on MHD non-Darcy free convection flow from a vertical plate in porous medium with heat and mass transfer. (4) Viscous dissipation and Joule heating effects on the vortex instability of MHD natural convection flow over a horizontal plate.
    For the case of the vortex instability of a horizontal MHD natural convection boundary layer flow in a saturated porous medium with surface mass flux, similarity solutions are admitted and can be solved by the sixth-order Runge-Kutta method. However, for the flows of radiation effect on horizontal plate in porous medium、Hall effect on vertical plate in porous medium and viscous dissipation and Joule heating effects on horizontal plate, similarity solutions are not existed. An efficient implicit Keller box finite difference method is employed to solve the governing equations. In stability analyses, the linear stability theory and local similarity approximation are applied in deriving the disturbance equations. The disturbance equations are solved by using the Runge-Kutta method incorporated with Gram-Schmidt orthogonalization procedure for neutral stability curves.
    The numerical results show that:(1) For MHD natural convection flow over a horizontal plate in a saturated porous medium,the similarity solutions exist only if there is a constant heat flux boundary. (2) For MHD natural convection flow over a horizontal plate,the magnetic parameter increases, the heat transfer rate and tangential velocity decrease. The magnetic effect destabilizes the flow to vortex mode of disturbance. (3) For MHD natural convection flow over a horizontal plate in a saturated porous medium,the radiation effect increases the tangential velocity 、dccreases the thermal diffusion boundary layer thickness、and stabilizes the flow to vortex mode of disturbance. (4) For MHD natural convection flow from a vertical plate in porous medium,when the strength of the magnetic field is strong,the Hall effect induces the lateral velocity and gives rise to thermal and mass transfer in the porous medium. (5) For MHD natural convection flow from a vertical plate in porous medium,as the Hall parameter m is increased, the tangential velocity continues to increase but however, the lateral velocity only increases for m ≦ 1 while it decreases for m > 1. (6) For MHD natural convection flow over a horizontal plate, when viscous dissipation and Joule heating effects are included, increasing on the tangential velocity is observed 、a considerable reduction in heat transfer rate occurred、and the flow destabilized to vortex mode of disturbance.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XIII 第一章 緒論 1 1.1 研究目的及背景 1 1.2 文獻回顧 3 1.3 本文結構及研究方法 11 第二章 磁液動流場之概述 14 2.1 磁液動流場 14 2.2 非達西效應 19 第三章 數學分析 25 3.1考慮慣性效應之多孔性介質鄰近水平板壁面磁液動自然對流 流場及其渦漩不穩定性分析 25 3.2考慮輻射與非達西效應之多孔性介質鄰近水平板壁面磁液動自然對流流場及其渦漩不穩定性分析 35 3.3霍爾效應對非達西多孔性介質鄰近垂直板壁面磁液動自然對流流場性能分析 46 3.4考慮黏滯逸散及焦耳加熱效應之一般流體鄰近水平板壁面磁液動自然對流流場及其渦漩不穩定性分析 52 第四章 數值方法 65 第五章 結果與討論 74 5.1考慮慣性效應之多孔性介質鄰近水平板壁面磁液動自然對流流場及其渦漩不穩定性分析 74 5.2考慮輻射與非達西效應之多孔性介質鄰近水平板壁面磁液動自然對流流場及其渦漩不穩定性分析 87 5.3霍爾效應對非達西多孔性介質鄰近垂直板壁面磁液動自然對流流場性能分析 102 5.4考慮黏滯逸散及焦耳加熱效應之一般流體鄰近水平板壁面磁液動自然對流流場及其渦漩不穩定性分析 126 第六章 結論 138 附錄一 140 附錄二 143 附錄三 145 參考文獻 155 自述 165

    1. E.M. Sparrow, R.D. Cess, Effect of magnetic field on free convection heat transfer, Int. J. Heat and Mass Transfer 3 (1961) 267-274.
    2. N. Riley, Magnetohydrodynamic free convection, J. of Fluid Mechanics 18 (1964) 577-586.
    3. A.S. Gupta, Laminar free convection flow of an electrically conducting fluid from a vertical plate with uniform surface heat flux and variable wall temperature in the presence of a magnetic field, J. Appl. Math. Phys. (ZAMP)13 (1963) 324-332.
    4. C.H. Chen, Combined heat and mass transfer in MHD free convection from a vertical surface with Ohmic heating and viscous dissipation, Int.J. Eng. Sci. 42 (2004) 699-713.
    5. P. Ganesan, G. Palani, Numerical solution of unsteady MHD flow past a semi-infinite isothermal vertical plate, Proc. of the 6th ISHMT/ASME Heat and Mass Transfer Conference and the 17th National Heat and Mass Transfer Conference, India, Jan. 5-7 (2004a) 184-187.
    6. P. Ganesan, G.Palani, Finite difference analysis of unsteady natural convection MHD flow past an inclined plate with variable surface heat and mass flux, Int. J. Heat Mass Transfer 47 (2004b) 4449-4457.
    7. J. C. Umavathi, M. S. Malashetty, Magnetohydrodynamic mixed convection in a vertical channel, Int. J. Non-linear Mech. 40 (2005) 91-101.
    8. G. Sposito, M. Ciofalo, One-dimensional mixed MHD convection, Int. J. heat and mass transfer 49 (2006) 2939-2949.
    9. AA. Raptis, N. Kafouslas, Heat transfer in flow through a porous medium bounded by an infinite vertical plate under the action of a magnetic field, J. Energy Res. 6 (1982) 241-245.
    10. Y.J. Kim, Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction, Int. J. Engineering Science 38(2000) 833-845.
    11. A.J. Chamkha, Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption, Int. J. Engineering Science 42(2004) 217-230.
    12. M.H. Kamel, Unsteady MHD convection through porous medium with heat and mass transfer with heat source/sink, Energy Conv. Manag. 42 (2001) 393-405.
    13. M.F. El-Amin, Combined effect of viscous dissipation and Joule heating on MHD forced convection over a non-isothermal horizontal cylinder embedded in a fluid saturated porous medium, Int. J. Magnetism and magnetic Materials 263 (2003) 337-343.
    14. H.S. Takhar, S.R. Gorla, Soundalgekar VM, Radiation effect on MHD free convection flow of a gas past a semi-infinite vertical plate, Int. J. Numer. Meth. Heat Fluid Flow 6 (1996) 77-83.
    15. R. Greif, I.S. Habib, J.C. Lin, Laminar convection of a radiating gas in a vertical channel, J. Fluid Mech. 45 (1971) 513-520.
    16. J.Z. Jordan, Network simulation method applied to radiation and viscous dissipation effects on MHD unsteady free convection over vertical porous plate, Applied Mathematical Modelling 31 (2007) 2019-2033.
    17. M.A. Seddeek, Effects of radiation and variable viscosity on a MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field in the case of unsteady flow, Int. J. Heat and Mass Transfer 45 (2002) 931-935.
    18. M.A. Abd El-Naby, E.M.E. Elbarbary, N.Y. AbdElazem, Finite difference solution of radiation effects on MHD unsteady free-convection flow over vertical porous plate, Appl. Math. Comput. 151 (2004) 327-346.
    19. Mostafa A.A. Mahmoud, Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity, Physical A 37 (2007) 401-410.
    20. M.A.Mansour, N.A.El-Shear, radiative effects on magnetohydro- dynamic natural convection flows saturated in porous media, Int. J. Magnetism and magnetic Materials 237 (2001) 327-341.
    21. C. Isreal-Cookey, A. Ogulu, V.B. Omubo-Pepple, Influence of viscous dissipation and radiation on the problem of unsteady MHD free-convection flow past an infinite heated vertical plate in a porous medium with time-dependent suction, Int. J. of Heat and Mass Transfer 46 (2003) 2305-2311.
    22. I.U. Mbeledogu, A .Ogulu, Heat and mass transfer of an unsteady MHD natural convection flow of a rotating fluid past a vertical porous flat plate in the presence of radiative heat transfer, Int. J. Heat and Mass Transfer 50 (2007) 1902-1908.
    23. I.Pop, The effect of Hall currents on hydromagnetic flow near an accelerated plate, J. Math. Phys. 5 (1971)375-385.
    24. I.Pop, T.Watanabe, Hall effects on magnetohydrodynamic free convection about a semi-infinite vertical flat plate, Int. J. Eng. Sci. 32 (1994)1903-1911.
    25. E.M.E. Elbarbary, E.M. Aboeldahab, Hall current effect on magnetohydrodynamic free-convection flow past a semi-infinite vertical plate with mass transfer. Int. J. Eng. Sci. 39 (2001)1641-1652.
    26. A.A. Megahed, S.R. Komy, A.A. Afify, Similarity analysis in magnetohydrodynamics: Hall effects on free convection flow and mass transfer past a semu-infinite vertical plate, Int. J. Non-linear Mech. 38 (2003)513-520.
    27. A.J. Chamkha, MHD-free convection from a vertical plate embedded in a thermal stratified porous medium with Hall effects, Appl. Math. Modelling 21 (1997) 603-609.
    28. K.A. Maleque, M.A. Sattar, The effects of variable properties and hall current on steady MHD laminar convection fluid flow due to a porous rotating disk, Int. J. Heat Mass Transfer 48 (2005) 4963-4972.
    29. J. S. Leu, C. N. Lin, MHD free convection flow on non-isothermal incline plate with viscous dissipation and Joule heating effects, JSME. J. Fluid Sci. and Tech. 3 No.7 (2008) 857-867.
    30. M. A. Alim, M. M. Alan, Abdullah-Al-Mamun, B. Hossain, Combined effect of viscous dissipation and Joule heat on the coupling of conduction and free convection along a vertical flat plate, Int. Comm. Heat Mass Transfer 35 (2008) 338-346.
    31. C. H. Chen, On the analytic solution of MHD flow and heat transfer for two types of viscoelastic fluid over a stretching sheet with energy dissipation, internal heat source and thermal radiation, J. of Heat Mass Transfer 53 (2010) 4264-4273.
    32. K. L. Hsiao, Heat and mass mixed convection for MHD visco-elastic fluid past a stretching sheet with ohmic dissipation, Commun Nonlinear Sci Numer Simult 53 ( 2010 ) 1803-1812.
    33. E. M. Sparrow, R. B. Husar, Longitudinal vortices in natural convection flow on inclined plates, J. Fluid Mech. 37 (1969) 251-255.
    34. J. R. Lloyd , E. M. Sparrow, On the instability of natural convection flow on inclined plates, J. Fluid Mech. 42 (1970).465-470.
    35. R.R.Gilpin, H. Imura, K.C. Cheng, Experiments on the onset of longitudinal vortices in horizontal Blasius flow heated from below, ASME J. Heat transfer 100 (1978) 71-77.
    36. A. Takimoto, Y. Hayashi, Thermal stability of Blasius flow over a horizontal flat plate, Heat Transfer-Japanese Research 12 (1983) 19-33.
    37. K.C. Cheng, Y. W. Kim, Flow visualization studies on vortex instability of natural convection flow over horizontal and slightly inclined constant temperature plates, ASME J. Heat Transfer 110 (1988) 608-615.
    38. G. J. Hwang, K.C. Cheng, Thermal stability of laminar natural convection flow on inclined isothermal plates, Canada J. Chem. Engng. 51 (1973) 659-666.
    39. T.S. Chen, K.L. Tzuoo, Vortex instability of free convection flow over horizontal and inclined surface, ASME J. Heat Transfer 104 (1982) 637-643.
    40. H.C. Tien, T.S. Chen, B. F. Armely, Vortex instability of natural convection flow over horizontal and inclined plates with uniform surface heat flux, Numerical Heat Transfer 9 (1986) 697-713.
    41. H.R. Lee, T.S. Chen, B. F. Armely, Non-parallel vortex instability of natural convection flow over a non-isothermal horizontal flat plate, Int. J. Heat Mass Transfer 34 (1991) 405-413.
    42. A. Moutsaglou, T.S. Chen, K.C. Cheng, Vortex instability of mixed convection flow over a horizontal flat plate, ASME J. Heat Transfer 103 (1981) 257-261.
    43. P. Cheng, Combined free and forced convection flow about inclined surfaced surfaces in porous media, Int. J. Heat Mass Transfer 20 (1977) 807-814.
    44. H.R. Lee, T.S. Chen, B. F. Armely, Non-parallel thermal instability of forced convection flow over a heated non-isothermal horizontal flat plate, Int. J. Heat Mass Transfer 33 (1990) 2019-2028.
    45. G. J. Hwang, Thermal instability in boundary layer and channel flows, Experiment Heat Transfer, Fluid Mech. And Thermodynamics, Elsevier Science Publishing Corp.(1991).
    46. S.A. Bories, M.A. Combarnous, Natural convection in a sloping porous layer, J. Fluid mech. 57 (1973) 63-79.
    47. C.T. Hsu, P. Cheng, G.M Homsy, Instability of free convection flow over a horizontal impermeable surfaces in porous media, Int. J. Heat and Mass Transfer 21 (1978) 1221-1228.
    48. C.T. Hsu, P. Cheng, Vortex instability in buoyancy-induced flow over inclined heated surfaces in porous media, ASME J. Heat Transfer 101 (1979) 660-665.
    49. J.Y. Jang, W.J. Chang, Vortex instability in buoyancy inclined boundary layer flow in a saturated porous medium, Int. J. Heat and Mass Transfer 31(1988) 759-767.
    50. J.Y. Jang, W.J. Chang, The flow and vortex instability of horizontal natural convection in a porous medium result from combined heat and mass buoyancy effects, Int. J. Heat and Mass Transfer 31 (1988) 769-777.
    51. C.T. Hsu, P .Cheng, The Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous medium, Int. J. Heat and Mass Transfer 28 (1985) 683-697.
    52. J.Y. Jang, W.J. Chang, Inertia effects on vortex instability of a horizontal natural convection flow in a porous medium, Int. J. Heat and Mass Transfer 32 (1989) 541-550.
    53. J.Y. Jang, J.L. Chen, Variable porosity and thermal dissipation effects on vortex instability of horizontal mixed convection flow in a porous medium, Thermo and Fluid Dynamics 29 (1994) 153-160.
    54. J.Y. Jang, Z.S. Leu, Variable viscosity effects on the vortex instability of free convection boundary layer flow over a horizontal surface in a porous medium, Int. J. Heat and Mass Transfer 36 (1993) 1287-1294.
    55. J.Y. Jang, J.L. Chen, Boundary and inertia effects on vortex instability of horizontal mixed convection flow in a porous medium, Numerical Heat Transfer part A 23 (1993) 187-204.
    56. J.Y. Jang, J.L. Chen, Thermal dissipation and inertia effects on vortex instability of horizontal mixed convection flow in a porous medium, Int. J. Heat and Mass Transfer 36 (1993) 1573-1582.
    57. B. A. Finlayson, Convective instability of Ferromagnetic Fluid, J. of Fluid Mech. l40 (1970) 753-767.
    58. L. Schwab, K. Stierstadt, Field-induced wavevector-selection by magnetic Benard convection, J. of Magnetism and magnetic materials 65 (1987) 315-316.
    59. P. J. Stiles, M. Kagan, Thermoconvective instability of a ferrofluid in a strong magnetic field, J. of Collid and Interface Science 134 (1990) 435-488.
    60. H. Yamaguchi, I. Kobori, Y. Uehata, and K. Shimada, Natural convection of magnetic fluid in a rectangular box, J. of Magnetism and Magnetic Materials 20 (1999).264-267.
    61. H. Yamaguchi, I. Kobori, Y. Uehata, Heat transfer in natural convection of magnetic fluids, J. of Thermophysics and Heat Transfer 13 (1999).501-507.
    62. C. Y. Wen, C. Y. Chen, S. F. Yang, Flow visualization of natural convection of magnetic fluid in a rectangular Hele-Shaw cell, J. of Magnetism and Magnetic Materials 252C (2002) 206-208.
    63. C. Y. Chen, Y. C. Wen, Numerical simulations of miscible magnetic flows in a Hele-Shaw cell, Part I. Radial flows, J. of Magnetism and Magnetic Materials 252C(2002) 296-298.
    64. C. Y. Hong, C. H. Ho, H. E. Horng, C. H. Chen, S. Y. Yang, Y. P. Chiu, and H. C. yang, Parameter dependence of two-dimensional ordered structures in magnetic fluid thin films subjected to perpendicular fields, Magnitnaya Gidrodinamika 35 (1999) 364-370.
    65. S. Kaddeche, D.Henry, Magnetic Stabilization of the Buoyant Convection between Infinite Horizontal Walls with a Horizontal Temperature Gradient, Journal of Fluid Mech. 480 Apr. (2003) 185-216.
    66. J. S Leu, J. Y. Jang, Effect of a Magnetic Field on Vortex Instability of Natural Convection Flow over a Horizontal Plate with Blowing and Suction, J. of the Chinese Institute of Engineers 31 N0.5 (2008) 879-884.
    67. N. A. Pelekasis, Linear Stability Analysis and dynamic Simulations of Free Convection in a Differentially Heated Cavity in the Presence of a Horizontal Magnetic field and a uniform heat source, Physics of Fluids 18 Issue. 3 (2006) 034101.
    68. T .Cebeci, P .Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Chap.13, Springer, New York, 1984.
    69. A.R. Wazzan, T.T. Okamura, H.M.O. Smith., Stability of laminar boundary layer at separation, Physics Fluids 190 (1967) 2540-2545.
    70. Kenneth R. Cramer, shih-i. Pai, Magnetofluid dynamics for engineerings and applied physicists, Scripta, Washington, 1973.
    71. P.A. Davidson, An introduction to magnetohydrodynamics, Combridge University, New York, 2001.
    72. H. Darcy, Les frontaines publiques de la ville de Dijon, Dalmont, Paris (1856)
    73. P. Forchheimer, Wasserbewegung durch Boden, Forchtlft Ver. D. Ing., Vol.13 (1901) 1782-1788.
    74. K. Vafai, C.L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int J. Heat mass Transfer 24 (1981) 195-203.
    75. H.C. Brinkman, Acalculation of the viscous force exerted by a flowing fluid on a dence swarm of paticles, Appl. Sci. Res. 1 (1947) 27-34.
    76. S.E. Haaland, E.M. Sparrow, Vortex instability of natural convection on inclined surfaces, Int J. Heat mass Transfer 16 (1973) 2355-2367.
    77. Robert Siegel, John R. Howell, Thermal Radiation Heat Transfer, Hemisohere Publishing Corporation, 1981.
    78. Michael F. Modest, Radiative Heat Transfer, McGraw-Hill, Inc., 1993.
    79. J.Y. Hong, C.L. Tien, M. Kaviany, Non-darcy effects on vertical-plate natural convection in porous media with high porosity, Int J. Heat mass Transfer 28 (1985) 2149-2157.

    下載圖示 校內:2014-07-14公開
    校外:2016-07-14公開
    QR CODE