簡易檢索 / 詳目顯示

研究生: 洪光燦
Hung, Kuang-Tsan
論文名稱: 不知壓縮參數下的方塊大小偵測與去方塊效應演算法
A Block Size Detection and Blocking Artifacts Reduction without Knowledge of Compression Parameters
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 62
中文關鍵詞: 方塊效應方塊大小偵測
外文關鍵詞: block size detection, blocking artifacts
相關次數: 點閱:141下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來多媒體通訊廣泛地應用影像壓縮的技術以減少儲存的資訊量和網路傳輸的負
    載。大部分的壓縮演算法會先把影像切割成大小相同的方塊,再對每個方塊進行離散餘
    弦轉換,並且分別量化每個方塊離散餘弦轉換後的係數。然而這種方法卻會在還原影像
    的方塊邊緣上造成明顯可見的方塊效應。有鑑於此,本論文提出一個高效能的演算法,
    可以偵測出方塊的大小和方塊邊界的位置,並有效地去除方塊效應。此演算法毋需得知
    壓縮的參數及標準,只須利用影像中的部分資料分批進行運算,故非常適合硬體實作。
    經實驗結果證明,此演算法對於不同的測試影像,皆較其他演算法有穩定及精準的表現。

    In order to reduce the storage and transmission costs, image compression has been widely
    used in multimedia communication. Most compression methods employ block-based DCT
    transform and quantize the DCT coefficients independently. However, it leads to visible
    artifacts along block boundaries in the decompressed image. In this thesis, we propose an
    algorithm to detect the block size and block boundary position of the decompressed image,
    and remove the blocking artifacts by directional filter and low-pass filter. Our algorithm can
    applied to various compression specifications without knowing any compression parameters.
    Moreover, the segment-based procedure of our algorithm is extremely suitable for hardware
    implementation. The simulation results show that our algorithm can effectively detect the
    block size and block boundary position among different test images and has the more
    outstanding performance in comparison with three existing methods.

    Contents Contents............................................................................................ i List of Figures ................................................................................ iii List of Tables ................................................................................... v Chapter1 Introduction ................................................................... 1 Chapter2 Blocking Artifacts and Existing Deblocking Methods 3 2.1 Blocking Artifacts ................................................................................................... 3 2.2 Existing Deblocking Methods................................................................................. 4 2.2.1 Deblocking of Block-Transform Compressed Images Using Weighted Sums of Symmetrically Aligned Pixels ................................................................ 5 2.2.2 Low complexity deblocking method for DCT coded video signals........... 13 Chapter3 Proposed Algorithm .................................................... 21 3.1 Detection of Block Size and Block Boundary Position ........................................ 21 3.2 Deblocking ............................................................................................................ 31 Chapter4 Experiment Results ..................................................... 37 4.1 The Results of Block Size and Block Boundary Detection .................................. 37 4.2 The Results of Deblocking.................................................................................... 49 ii Chapter5 Conclusions and Future work .................................... 58 5.1 Conclusions ........................................................................................................... 58 5.2 Future Work .......................................................................................................... 59 References ..................................................................................... 60 Biography...................................................................................... 62

    References
    [1] Amir Z. Averbuch, Alon Schclar, and David L. Donoho. Deblocking of block-transform
    compressed images using weighted sums of symmetrically aligned pixels. IEEE
    Transactions on Image Processing, 14(2):200-212, February 2005.
    [2] Roberto Castagno, Stefano Marsi and Giovanni Ramponi. A simple algorithm for the
    reduction of blocking artifacts in images and its implementation. IEEE Transactions on
    Consumer Electronics, 44(3):1062-1070, August 1998.
    [3] Tao Chen, Hong Ren Wu, and Bin Qiu. Adaptive postfiltering of transform coefficients
    for the reduction of blocking artifacts. IEEE Transactions on Circuits and Systems for
    Video Technology, 11(5):594-602, May 2001.
    [4] Yuh-Feng Hsu and Yung-Chang Chen. A new adaptive separable median filter for
    removing blocking effects. IEEE Transactions on Consumer Electronics, 39(3):510-513,
    August 1993.
    [5] Byeungwoo Jeon, and Jechang Jeong. Blocking artifacts reduction in image compression
    with block boundary discontinuity criterion. IEEE Transactions on Circuits and Systems
    for Video Technology, 8(3):345-357, June 1998.
    [6] Sung Deuk Kim, Jaeyoun Yi, Hyun Mun Kim, and Jong Beom Ra. A deblocking filter
    with two separate modes in block-based video coding. IEEE Transactions on Circuits and
    Systems for Video Technology, 9(1):156-160, February 1999.
    [7] Y. L. Lee, H. C. Kim, and H. W. Park. Blocking effect reduction of JPEG images by
    61
    signal adaptive filtering. IEEE Transactions on Image Processing, 7(2):229-234,
    February 1998.
    [8] Alan W.-C. Liew, and Hong Yan. Blocking Artifacts suppression in block-coded images
    using overcomplete wavelet representation. IEEE Transactions on Circuits and Systems
    for Video Technology, 14(4):450-461, April 2004.
    [9] Ying Luo and Rabab K. Ward. Removing the blocking artifacts of block-based DCT
    compressed images. IEEE Transactions on Image Processing, 12(7):838-842, July 2003.
    [10] S.-C. Tai, Y.-R. Chen, C.-Y. Chen and Y.-H. Chen. Low complexity deblocking method
    for DCT coded video signals. IEE Proceedings - Vision, Image and Signal processing,
    153(1):46-56, February 2006.
    [11] Shen-Chuan Tai, Yen-Yu Chen, and Shin-Feng Sheu. Deblocking filter for low bit rate
    MPEG-4 video. IEEE Transactions on Circuits and Systems for Video Technology,
    15(6):733-741, June 2005.
    [12] Ci Wang, Wen-Jun Zhang, and Xiang-Zhong Fang. Adaptive reduction of blocking
    artifacts in DCT domain for highly compressed images. IEEE Transactions on Consumer
    Electronics, 50(2):647-654, May 2004.
    [13] Zhou Wang, Alan C. Bovik, and Brian L. Evans. Blind measurement of blocking artifacts
    in images. 2000. Proceedings. 2000 International Conference on Image Processing,
    3:981-984, 2000.
    [14] Y. Zhao, G. Cheng and S. Yu. Postprocessing technique for blocking artifacts reduction
    in DCT domain. Electronics Letters, 40(19):1175-1176, September 2004

    下載圖示 校內:2009-07-14公開
    校外:2009-07-14公開
    QR CODE