簡易檢索 / 詳目顯示

研究生: 江蘿
Jiang, Luo
論文名稱: 垂直軸風力機葉片性能之預測與最佳化
Prediction and Optimization of Vertical Axis Wind Turbine Blade Performance
指導教授: 林三益
Lin, San-Yih
闕志哲
Chueh, Chih-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 94
中文關鍵詞: 垂直軸風力發電機基因演算法半經驗坐標系統翼型參數化元素空間卷積神經網路
外文關鍵詞: Vertical Axis Wind Turbine, Genetic Algorithm, PARSEC, ESCNN
相關次數: 點閱:94下載:54
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是展示一套最佳化垂直軸風力發電機(VAWT)功率的半自動 化的流程。其方法是利用基因演算法,設計參數及約束條件根據半經驗坐標系統 翼型參數化(PARSEC)方法定義,目標是最大化功率係數。為了提高優化效率, 該架構結合了機器學習,神經網路模型使用元素空間卷積神經網路(ESCNN),資 料集由Qblade軟體中的理論模型計算並生成,資料的選定是設定某一區間的風 速及轉速。本篇以NACA0015為範例進行最佳化,為了比較優化前後的功率係 數差異與獲得較準確的結果,所以將優化前與優化後的葉片皆以Ansys Fluent軟 體進行數值模擬,包括在不同轉速下進行功率比對。

    The purpose of this study is to demonstrate a semi-automated process for optimizing the power output of a vertical axis wind turbine (VAWT). The methodology involves using a typical genetic algorithm, with design parameters and constraints defined according to the PARSEC method, aiming to maximize the power coefficient. To improve optimization efficiency, the framework integrates machine learning. The dataset is calculated and generated by theoretical models in Qblade software, with data selection based on specified ranges of wind speed and rotational speed. The optimization is exemplified using the NACA0015 airfoil. To compare the differences in power coefficients before and after optimization and to obtain more accurate results, numerical simulations of the blades before and after optimization are conducted using CFD software to determine the power coefficient.

    摘要 I Extent Abstract II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 3 1-4 論文大綱 5 第二章 基礎理論 7 2-1 風機種類 7 2-2 貝茲定律 7 2-3 雙制動盤多流管模型 10 2-4 全連接神經網路 13 2-5 損失函數與收斂標準 14 2-6 機器學習最佳化方法 15 2-7 PARSEC 方法 18 2-8 基因演算法概述 20 2-9 RANS 模型 21 2-10 網格中心最小平方法 26 第三章 研究方法 28 3-1 資料前處理 28 3-2 定義收斂標準 29 3-3 PARSEC計算方法 31 3-4 基因演算法說明 31 3-5 邊界層網格設定 34 3-6 時間步長估計 35 3-7 數值模擬相關設定 37 第四章 結果與討論 39 4-1 引入神經網路 39 4-2 評估模型準確度 40 4-3 神經網路結合PARSEC方法 41 4-4 最佳化方法 41 4-5 數值驗證 42 4-6 流場分析 43 4-7 單獨一片葉片分析 45 4-8 不同轉速下的影響 45 4-9 優化前後功率係數 46 第五章 結論及建議 47 5-1 機器學習 47 5-2 數值模擬方面討論與建議: 48 5-3 最佳化算法之建議 48 5-4 PARSEC方法問題: 49 5-5 程式架構 49 5-6 未來建議 49 參考文獻 50

    [1] K. Fujii and G. S. Dulikravich, Eds., Recent Development of Aerodynamic Design Methodologies: Inverse Design and Optimization, vol. 65. in Notes on Numerical Fluid Mechanics (NNFM), vol. 65. Wiesbaden: Vieweg+Teubner Verlag, 1999. doi: 10.1007/978-3-322-89952-1.
    [2] P. M. Kumar, S. R. Rashmitha, N. Srikanth, and T.-C. Lim, “Wind Tunnel Validation of Double Multiple Streamtube Model for Vertical Axis Wind Turbine,” Smart Grid Renew. Energy, vol. 08, no. 12, pp. 412–424, 2017, doi: 10.4236/sgre.2017.812027.
    [3] R. Bravo, S. Tullis, and S. Ziada, “Performance Testing of a Small Vertical-Axis Wind Turbine”.
    [4] “A Cascade Theory for the Aerodynamic Performance of Darrieus Wind Turbines,” 2024.
    [5] T. J. Baker, “Mesh generation: Art or science?,” Prog. Aerosp. Sci., vol. 41, no. 1, pp. 29–63, Jan. 2005, doi: 10.1016/j.paerosci.2005.02.002.
    [6] A. Rezaeiha, H. Montazeri, and B. Blocken, “On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines,” Energy, vol. 180, pp. 838–857, Aug. 2019, doi: 10.1016/j.energy.2019.05.053.
    [7] H. Liu and F. Ave, “An Airfoil Aerodynamic Parameters Calculation Method Based on Convolutional Neural Network”.
    [8] W. Peng, Y. Zhang, E. Laurendeau, and M. C. Desmarais, “Learning aerodynamics with neural network,” Sci. Rep., vol. 12, no. 1, p. 6779, Apr. 2022, doi: 10.1038/s41598-022-10737-4.
    [9] J. H. Holland, Adaptation in Natural and Artificial Systems - An Introductory Analysis with Applications to Biology, Control, and Artificial I. Cambridge: The MIT Press, 2019.
    [10] C. S. Ferreira and B. Geurts, “Aerofoil optimization for vertical‐axis wind turbines,” Wind Energy, vol. 18, no. 8, pp. 1371–1385, Aug. 2015, doi: 10.1002/we.1762.
    [11] T. Majid and B. W. Jo, “Comparative Aerodynamic Performance Analysis of Camber Morphing and Conventional Airfoils,” Appl. Sci., vol. 11, no. 22, p. 10663, Nov. 2021, doi: 10.3390/app112210663.
    [12] G. Bangga, S. Hutani, and H. Heramarwan, “The Effects of Airfoil Thickness on Dynamic Stall Characteristics of High‐Solidity Vertical Axis Wind Turbines,” Adv. Theory Simul., vol. 4, no. 6, p. 2000204, Jun. 2021, doi: 10.1002/adts.202000204.
    [13] L. Wang et al., “A deep learning-based optimization framework of two-dimensional hydrofoils for tidal turbine rotor design,” Energy, vol. 253, p. 124130, Aug. 2022, doi: 10.1016/j.energy.2022.124130.
    [14] I. M. Mirzana, S. R. Ahmed, and T. Junaid, “Fabrication Methodology of Small Scale Horizontal Axis Wind Turbine,” 2016.
    [15] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”.
    [16] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” USSR Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1–17, Jan. 1964, doi: 10.1016/0041-5553(64)90137-5.
    [17] M. H. G. Syafei, R. T. Indrawati, and T. A. Farhan, “Implementation of the Airfoil parameterization PARSEC Method in Python,” J. Rekayasa Mesin, vol. 17, no. 3, p. 485, Dec. 2022, doi: 10.32497/jrm.v17i3.4000.
    [18] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, Aug. 1994, doi: 10.2514/3.12149.
    [19] S. Michael, “Applied Aerodynamics Group, University of Illinois Urbana-Champaign, Department of Aerospace Engineering, UIUC Airfoil Coordinates Database”, [Online]. Available: https://m-selig.ae.illinois.edu/ads/coord_database.html
    [20] “QBLADE: AN OPEN SOURCE TOOL FOR DESIGN AND SIMULATION OF HORIZONTAL AND VERTICAL AXIS WIND TURBINES,” Int. J. Emerg. Technol. Adv. Eng..
    [21] K. Dimitrios, “parsec-airfoils”, [Online]. Available: https://github.com/dqsis/parsec-airfoils
    [22] mbodmer, “libairfoil”, [Online]. Available: https://github.com/mbodmer/libairfoil/tree/master
    [23] L. Zi, “CNN-for-Airfoil,” 2018, [Online]. Available: https://github.com/ziliHarvey/CNN-for-Airfoil
    [24] 林銘洋/Lin M.-Y., “基於深度學習之翼型優化及流場預測/Airfoil Optimization and Flow Field Prediction Based on Deep Learning”.
    [25] Y. A. Çengel and J. M. Cimbala, Fluid mechanics: fundamentals and applications, Third edition. New York: McGraw Hill, 2014.
    [26] L. Zhang et al., “Influences of trailing edge split flap on the aerodynamic performance of vertical axis wind turbine,” Energy Sci. Eng., vol. 9, no. 1, pp. 101–115, Jan. 2021, doi: 10.1002/ese3.818.
    [27] “Hi-VAWT Technology”, [Online]. Available: http://www.hi-vawt.com.tw/tw/tw_why_vaswt.html
    [28] Suprayitno, J. C. Yu, Aminnudin, and R. Wulandari, “Airfoil aerodynamics optimization under uncertain operating conditions,” J. Phys. Conf. Ser., vol. 1446, no. 1, p. 012014, Jan. 2020, doi: 10.1088/1742-6596/1446/1/012014.
    [29] “MSc Thesis Application of automotive alternators in small wind turbines”.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE