| 研究生: |
林其安 Lin, Chi-An |
|---|---|
| 論文名稱: |
以分子動力學分析鎳鋁合金奈米板之機械性質與裂縫之傳播行為 A Study on Mechanical Behaviors and Crack Propagation of NixAl100-x Nanoplate by Molecular Dynamics Simulation |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 分子動力學 、鎳鋁合金 、淬火速率 、裂縫 |
| 外文關鍵詞: | Molecular dynamics, NiAl alloy, Quenching rate, Crack |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之重點在於探討不同鎳鋁比例之鎳鋁合金奈米板,在不同淬火速率下之機械性質,以及觀察裂縫之傳播如何影響其破壞行為。模擬所使用之方法為分子動力學模擬法,並選用EAM勢能函數,搭配軟體LAMMPS作為模擬工具,分析各個材料在不同淬火速率下之結晶分佈,並在淬火後之模型上預設裂縫,經由單軸拉伸觀察裂縫之傳播行為,並探討裂縫數量、裂縫大小及淬火速率對材料之機械性質的影響。模擬結果顯示,五種材料中,Ni25Al75具有最佳之非晶形成能力,Ni50Al50則最不易形成非晶。而從淬火速率為0.5K/ps之模型中,可同時觀察到兩種截然不同的破壞方式,分別是屬於脆性破壞的Ni40Al60和Ni50Al50及屬於韌性破壞的Ni25Al75和Ni75Al25。就裂縫之效應來看,當裂縫數量增加,材料之極限應力值隨之下降,而改變裂縫大小時,裂縫長度之變化造成的影響會大於裂縫寬度。隨著淬火速率提升,各材料之非晶比例會隨之上升,但極限應力值則隨之下降。而在淬火速率為25K/ps之下,所有材料幾乎完全為非晶結構,此時模型之破壞均是透過剪切帶之傳遞,且極限應力值之大小也與模型內鎳原子比例成正比。
In this thesis, the program package LAMMPS with EAM potential is adopted for performing molecular dynamics simulations to investigate the mechanical and fracture behaviors of NiAl alloy with five different ratios of Ni and Al. At first, the distributions of different types of crystallization within each material under five different quenching rates are evaluated, and they are used as simulation models subjected to uniaxial tension. Besides, a crack is imposed on physical models prior to simulation. The effects of cracks on the fracture of materials are then investigated. It is found that among five different materials, Ni25Al75 has the best amorphous formation ability, while Ni50Al50 has the worst. There exist two distinct fracture behaviors at quenching rate 0.5K/ps, i.e., brittle fracture for Ni40Al60 and Ni50Al50 while ductile fracture for Ni25Al75 and Ni75Al25.The magnitude of the ultimate stress is decreased with the increase of crack number. Moreover, the effect of crack length on the mechanical properties and fracture mechanism is more significant than the crack width. Moreover, it is found that the magnitude of the ultimate stress of materials is decreased as the quenching rate is enhanced. As the quenching rate reaches 25K/ps, microstructure of all the materials is almost amorphous, leading to the deformation and fracture mechanisms through the propagation of the shear band. Meanwhile, the magnitude of the ultimate stress is increased with the increasing contents of Ni in NiAl alloy.
1. Inoue, A., Bulk amorphous and nanocrystalline alloys with high functional properties. Materials Science and Engineering: A, 2001. 304: p. 1-10.
2. Klement, W., R. Willens, and P. Duwez, Non-crystalline structure in solidified gold–silicon alloys. Nature, 1960. 187(4740): p. 869-870.
3. Chen, H. and D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses. Acta metallurgica, 1969. 17(8): p. 1021-1031.
4. Inoue, A., T. Zhang, and T. Masumoto, Al–La–Ni amorphous alloys with a wide supercooled liquid region. Materials transactions, JIM, 1989. 30(12): p. 965-972.
5. Inoue, A., Kato, A., Zhang, T., Kim, S. G., & Masumoto, T. Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Materials Transactions, JIM, 1991. 32(7): p. 609-616.
6. Peker, A. and W.L. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5. Applied Physics Letters, 1993. 63(17): p. 2342-2344.
7. Kennedy, B.W., Energy efficient transformers. 1998: McGraw-Hill Professional Publishing.
8. Wang, J., Hodgson, P. D., Zhang, J., Yan, W., & Yang, C. Effects of pores on shear bands in metallic glasses: A molecular dynamics study. Computational materials science, 2010. 50(1): p. 211-217.
9. Shi, Y. and M.L. Falk, Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta materialia, 2007. 55(13): p. 4317-4324.
10. Imran, M., et al., Mechanical behavior of Cu—Zr bulk metallic glasses (BMGs): A molecular dynamics approach. Chinese Physics B, 2013. 22(9): p. 096101.
11. Li, Q.-K. and M. Li, Assessing the critical sizes for shear band formation in metallic glasses from molecular dynamics simulation. Applied Physics Letters, 2007. 91(23): p. 231905.
12. Murali, P., Guo, T. F., Zhang, Y. W., Narasimhan, R., Li, Y., & Gao, H.J. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Physical review letters, 2011. 107(21): p. 215501.
13. Zhao, S., J. Li, and B. Liu, Chemical and topological short-range orders in the ternary Ni–Zr–Al metallic glasses studied by Monte Carlo simulations. Journal of Physics: Condensed Matter, 2013. 25(9): p. 095005.
14. Sha, Z. D., Pei, Q. X., Liu, Z. S., Zhang, Y. W., & Wang, T. J., Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches. Scientific reports, 2015. 5.
15. Sepúlveda-Macías, M., N. Amigo, and G. Gutiérrez, Onset of plasticity and its relation to atomic structure in CuZr metallic glass nanowire: A molecular dynamics study. Journal of Alloys and Compounds, 2016. 655: p. 357-363.
16. Zhong, C., Zhang, H., Cao, Q. P., Wang, X. D., Zhang, D,X., Ramamurty, U., & Jiang, J. Z. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study. Scientific Reports, 2016. 6.
17. Sung, P.-H. and T.-C. Chen, Effects of quenching rate on crack propagation in NiAl alloy using molecular dynamics. Computational Materials Science, 2016. 114: p. 13-17.
18. Irving, J. and J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of chemical physics, 1950. 18(6): p. 817-829.
19. Jones, J.E. On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1924. The Royal Society.
20. Jones, J.E. On the determination of molecular fields. II. From the equation of state of a gas. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1924. The Royal Society.
21. Jones, J., On the determination of molecular fields. III. From crystal measurements and kinetic theory data. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1924. 106(740): p. 709-718.
22. Girifalco, L.A. and V.G. Weizer, Application of the Morse potential function to cubic metals. Physical Review, 1959. 114(3): p. 687.
23. Daw, M.S., Foiles, S.M. and M.I. Baskes, The embedded-atom method: a review of theory and applications. Materials Science Reports, 1993. 9(7-8): p. 251-310.
24. Cleri, F. and Rosato, V. Tight-binding potentials for transition metals and alloys. Physical Review B, 1993. 48(1): p. 22.
25. Tersoff, J., New empirical model for the structural properties of silicon. Physical review letters, 1986. 56(6): p. 632.
26. Tersoff, J., New empirical approach for the structure and energy of covalent systems. Physical Review B, 1988. 37(12): p. 6991.
27. Tersoff, J., Empirical interatomic potential for silicon with improved elastic properties. Physical Review B, 1988. 38(14): p. 9902.
28. Tersoff, J., Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B, 1989. 39(8): p. 5566.
29. Verlet, L., Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 1967. 159(1): p. 98.
30. Quentrec, B. and C. Brot, New method for searching for neighbors in molecular dynamics computations. Journal of Computational Physics, 1973. 13(3): p. 430-432.
31. Iwaki, T., Molecular dynamics study on stress-strain in very thin film: Size and location of region for defining stress and strain. JSME international journal. Ser. A, Mechanics and material engineering, 1996. 39(3): p. 346-353.