簡易檢索 / 詳目顯示

研究生: 胡毅
Hu, Yi
論文名稱: 以類傑夫法製備電極用於臨床尿液檢體之肌酸酐電位式感測
Fabrication of electrode based on modified Jaffé method for the potentiometric detection of creatinine in clinical urine samples
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 肌酸肝傑夫法能斯特方程式電聚合電化學檢測尿液臨床檢體
外文關鍵詞: Jaffé reaction, Nernst equation, electropolymerization, electrochemical sensor, clinical urine spicemen
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌酸酐為肌酸 (creatine) 與磷酸肌酸 (creatine phosphate) 之代謝廢物,為人體血液與尿液中作為評估腎臟功能的重要指標之一,臨床上常使用傑夫呈色法 (Jaffé reaction),利用苦味酸 (picric acid) 與肌酸酐之呈色反應進行檢測。本研究期望以電化學方法結合傑夫呈色法以達到更快速且便利之定量手段。以3,5-二硝基苯甲酸 (3,5-dinitrobenzoic acid, DNB) 取代苦味酸,透過分光光度計、螢光光度計和紅外線光譜儀分析DNB與肌酸酐之呈色反應,本研究簡稱為類傑夫呈色法 (modified Jaffé reaction)。
    本研究擬將DNB固定於以poly(Pyr-P3CA) 高分子膜修飾的工作電極上,poly(Pyr-P3CA) 是以吡咯 (pyrrole, Pyr) 與吡咯-3-羧酸 (pyrrole-3-carboxylic acid, P3CA) 經由電聚合方式形成的共聚膜。文中除了以分光光度計、螢光光度計和紅外線光譜儀分析確認DNB與肌酸酐之反應性,乃是以電化學電位式進行肌酸酐濃度的校正與檢測。此外不同的電極製備參數亦將於本研究中進行探討,同時,亦以本研究開發的肌酸酐感測器對尿液檢體進行感測與比對,以確認開發的感測器在臨床應用的可行性。

    Creatinine, a metabolite from creatine and creatine phosphate, is a key indicator for kidney’s function in human’s bloodstream and urine. In clinical, Jaffé reaction is the most common method to detect creatinine, where picric acid can react with creatinine in alkaline condition. In this study, we use 3,5-dinitrobenzoic acid (DNB) instead of picric acid to achieve a more convenient and faster way in creatinine detection. By UV/Vis spectrophotometer, fluorescence spectrometer and FTIR, we can analyze the reaction between DNB and creatinine, named “modified Jaffé reaction”.
    In this research, DNB is immobilized onto the working electrode by poly(Pyr-P3CA) film, where pyrrole (Pyr) and pyrrole-3-carboxylic acid (P3CA) are copolymerized by electropolymerization. We not only discuss the reactivity by UV/Vis spectrometer, fluorescence spectrometer and FTIR, but also optimize creatinine calibration and detection by potentiometry. Last but not least, the fabricated creatinine sensor will apply in urine spicemen detection to ensure the feasibility in clinical application.

    中文摘要 I Extended Abstract Ⅱ 誌謝 Ⅴ 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1前言 1 1-2腎功能 (Kidney’s function) 1 1-3研究動機及目的 2 第二章 文獻回顧 3 2-1 肌酸酐 (Creatinine) 3 2-1-1 簡介 3 2-1-2 臨床評估 3 2-2 生醫感測器概述 4 2-2-1 發展 4 2-2-2 生物識別元件 (Bioreceptor) 5 2-2-3 識別元件的固定化 9 2-2-4 超分子化學識別法 11 2-2-5 生物抗汙 (Antibiofouling) 12 2-2-6生醫感測器種類 12 2-3 肌酸酐感測技術 18 2-3-1 呈色法 (Colorimetry) 18 2-3-2 酵素法 (Enzymatic method) 19 2-3-3 電化學法 (Electrochemistry) 20 2-4 電化學方法 20 2-4-1 電化學感測途徑 20 2-4-2 線性掃描伏安法 (Linear sweep voltammetry, LSV) 20 2-4-3 循環伏安法 (Cyclic voltammetry, CV) 21 2-4-4 脈衝伏安法 (Pulse voltammetry, PV) 21 2-4-5 電化學阻抗分析 (Electrochemical impedance spectroscopy, EIS) 22 2-4-6 安培法 (Amperometry) 23 第三章 實驗方法、材料與儀 25 3-1 以HPLC 製備肌酸酐標準尿溶液之檢量線 25 3-2 以UV/Vis 分光光度計分析肌酸酐呈色反應 25 3-3 以螢光光譜儀分析肌酸酐呈色反應 25 3-3-1 肌酸酐呈色反應圖譜 25 3-3-2 Job plot分析 26 3-4 以FTIR 分析肌酸酐呈色反應 26 3-5 工作電極之製備 26 3-5-1 裸金電極 (Bare Au) 26 3-5-2 Polypyrrole 修飾電極 26 3-5-3 PPy-DNB 修飾電極 26 3-5-4 Poly(Pyr-P3CA)-DNB 修飾電極 27 3-5-5 三極式電化學系統 27 3-6 以SEM 掃描式電子顯微鏡觀察電極表面 28 3-7 以修飾電極進行電活性探討 28 3-8 肌酸酐之感測條件最佳化 28 3-8-1 背景攪拌速率 28 3-8-2 背景NaOH 濃度 28 3-8-3 背景pH 29 3-8-4 前置平衡時間 29 3-9 修飾電極之電聚合條件最佳化 29 3-9-1 掃描速率 29 3-9-2 掃描圈數 29 3-9-3 DNB濃度及有無P3CA 29 3-9-4 電聚合pH 29 3-9-5 浸泡條件之選擇 30 3-10 稀釋肌酸酐標準尿溶液之檢量線 30 3-11 選擇性測試 30 3-11-1單針測試 31 3-11-2連續測試 31 3-12 臨床尿液檢體檢測 31 3-13 電極保存穩定性測試 31 3-14 相關儀器介紹 32 3-14-1 高效液相層析法 (High performance liquid chromatographer, HPLC) 32 3-14-2 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer, FTIR) 32 3-14-4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 32 3-15 實驗藥品 33 3-16 實驗儀器 34 第四章 結果與討論 35 4-1 肌酸酐反應之呈色分析 36 4-2 肌酸酐反應之螢光分析 40 4-2-1 以螢光光度計半定量分析肌酸酐反應 40 4-2-2 以Job plot探討類傑夫法產物 43 4-3 以FTIR分析類傑夫法反應機構 43 4-4 電化學系統分析 47 4-4-1 背景攪拌速率探討 47 4-4-2 背景NaOH 濃度探討 47 4-4-3 背景pH探討 49 4-4-4 前置平衡時間探討 50 4-5 電極修飾分析 52 4-5-1 SEM影像 52 4-5-2 電極電活性測試 53 4-5-3 電聚合掃描速率與圈數探討 54 4-5-4 電聚合反應物濃度探討 56 4-5-5 電聚合環境pH探討 58 4-5-6以浸泡法探討電極檢測之檢量線 60 4-6 稀釋倍率探討 63 4-7選擇性探討 66 4-8 臨床檢體檢測 67 4-9 電極穩定性測試 70 4-10 本研究與過去文獻比較 71 第五章 結論 73 參考文獻 74

    [1] J Du, B Zhu, WR Leow, S Chen, TC Sum, X Peng, X Chen. Colorimetric detection of creatinine based on plasmonic nanoparticles via synergistic coordination chemistry. Small, 33, 4104‒4110, 2015.
    [2] CS Kosack, W. Kieviet, K Bayrak, A Milovic, AL Page. Evaluation of the Nova StatSensor® XpressTM creatinine point-of-care handheld analyzer. PLoS One, 10, 1‒11, 2015.
    [3] KG Blass. Reactivity of creatinine with alkaline 3,5-dinitrobenzoate: a new fluorescent kidney function test. Clinical Biochemistry, 28, 107‒111, 1995.
    [4] H Rao, Z Lu, H Ge, X Liu, B Chen, P Zou, X Wang, H He, X Zeng, Y Wang. Electrochemical creatinine sensor based on a glassy carbon electrode modified with a molecularly imprinted polymer and a Ni@polyaniline nanocomposite. Microchim Acta, 184, 261‒269, 2017.
    [5] 吳明儒。評估腎臟功能的方法。腎臟語病析, 19卷2期,2007
    [6] W Putzbach, NJ Ronkainen. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors, 13, 4811‒4840, 2013.
    [7] AJ Bard, LR Faulkner. Electrochemical methods: fundamentals and applications. 2001.
    [8] L Li, Y Wang, L Pan, Y Shi, W Cheng,, Y Shi, G Yu. A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Letters, 15, 1146‒1151, 2015.
    [9] J Kim, I Jeerapan, S Imani, TN. Cho, A Bandodkar, S Cinti, PP Mercier, J Wang. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sensors, 1, 1011‒1019, 2016.
    [10] G Rocchitta, A Spanu, S Babudieri, G Latte, G Madeddu, G Galleri, S Nuvoli, P Bagella, MI Demartis, V Fiore, R Manetti, PA Serra. Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors, 16, 1‒21, 2016.
    [11] MU Ahmed, MM Hossain, M Safavieh, YL Wong, IA Rahman, M Zourob, E Tamiya. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Critical Reviews in Biotechnology, 36, 495‒505, 2016.
    [12] A Karczmarczyk, AJ Baeumner, KH Feller Rapid and sensitive inhibition-based assay for the electrochemical detection of Ochratoxin A and Aflatoxin M1 in red wine and milk. Electrochimica Acta, 243, 82‒89, 2017.

    [13] C Lui, NC Cady, CA Batt. Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems. Sensors,9, 3713‒3744, 2009.
    [14] R Ren, C Leng, S Zhang. A chronocoulometric DNA sensor based on screen-printed electrode doped with ionic liquid and polyaniline nanotubes. Biosensors and Bioelectronics, 25, 2089‒2094, 2010.
    [15] V Kavita. DNA biosensors-a review," Journal of Bioengineering & Biomedical Science. 7, 1‒5, 2017.
    [16] Y Fu, T Chen, G Wang, T Gu, C Xie, J Huang, X Li, S Best, G Han. Production of a fluorescence resonance energy transfer (FRET) biosensor membrane for microRNA detection. Journal of Materials Chemistry B, 5, 7133‒7139, 2017.
    [17] SM Tripathi, WJ Bock, P Mikulic, R Chinnappan, A Ng, M Tolba, M Zourob. Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosensors and Bioelectronics, 35, 308‒312, 2012.
    [18] A Fendyur, S Varma, CT. Lo, J Voldman. Cell-based biosensor to report DNA damage in micro- and nanosystems. Analytical Chemistry. 86, 7598‒7605, 2014.
    [19] X Xu, Y Ying, Microbial biosensors for environmental monitoring and food analysis. Food Reviews International. 27, 300‒329, 2011.
    [20] HA Ali, A Nabok, T Smith, MA Shanawa. Development of electrochemical inhibition biosensor based on bacteria for detection of environmental pollutants. Sensing and Bio-Sensing Research, 13, 109‒114, 2017.
    [21] NG Gurudatt, MH Naveen, C Ban, YB Shim. Enhanced electrochemical sensing of leukemia cells using drug/lipid co-immobilized on the conducting polymer layer. Biosensors and Bioelectronics, 86, 33‒40, 2016.
    [22] M Subat, AS Borovik, B König. Synthetic creatinine receptor:  imprinting of a Lewis acidic zinc(II)cyclen binding site to shape its molecular recognition selectivity. Journal of American Chemical Society, 126, 3185‒3190, 2004.
    [23] T Guinovart, DH Alonso, L Adriaenssens, P Blondeau, FX Rius, P Ballester, FJ Andrade. Characterization of a new ionophore-based ion-selective electrode for the potentiometric determination of creatinine in urine. Biosensors and Bioelectronics, 87, 587‒592, 2017.
    [24] J Barman. Targeting cancer cells using aptamers: cell-SELEX approach and recent advancements. RSC Advances, 5, 11724‒11732, 2015.
    [25] JW Park, JS Shumaker-Parry. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization. Acs Nano, 9, 1665‒1682, 2015.
    [26] SK Min, WY Kim, Y Cho, KS Kim. Fast DNA sequencing with a graphene-based nanochannel device. Nature Nanotechnology, 6, 162‒165, 2011.
    [27] N Aydemir, J Malmström, JT Sejdic. Conducting polymer based electrochemical biosensors. Physical Chemistry Chemical Physics, 18, 8264‒8277, 2016.
    [28] S Zhang, R Geryak, J Geldmeier, S Kim, VV Tsukruk. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chemical Reviews, 117, 12942‒13038, 2017.
    [29] GM Holzinger, AL Gof, S Cosnier. Supramolecular immobilization of bio-entities for bioelectrochemical applications. New Journal of Chemistry, 38, 5173-5180, 2014.
    [30] P Jonkheijm, D Weinrich, H Schröder, CM Niemeyer, H Waldmann. Chemical strategies for generating protein biochips. Angewandte Chemie, 47, 9618‒9647, 2008.
    [31] DY Li, XW He, Y Chen, WY Li, YK Zhang. Novel hybrid structure silica/CdTe/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin. ACS Applied Materials & Interfaces, 5, 12609‒12616, 2013.
    [32] Y Li, Y Liu, J Liu, J Liu, H Tang, C Cao, D Zhao, Y Ding. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Scientific Reports, 5, 7699‒7706, 2015.
    [33] MAR Khan, FTC Moreira, J Riu, MGF Sales. Plastic antibody for the electrochemical detection of bacterial surface proteins. Sensors and Actuators B, 233, 697‒704, 2016.
    [34] S Subrahmanyam, SA Piletsky, EV Piletska, B Chen, K Karim, APF Turner. Bite-and-switch approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosensors and Bioelectronics, 16, 631‒637, 2001.
    [35] D Lakshmi, BB Prasad, PS Sharma. Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode. Talanta, 70, 272‒280, 2006.
    [36] L Chen, X Wang, W Lu, X Wu, J Li. Molecular imprinting: perspectives and applications. Chemical Society Reviews, 45, 2137‒2211, 2016.
    [37] MC Sin, SH Chen, Y Chang. Hemocompatibility of zwitterionic interfaces and membranes. Polymer Journal, 46, 436‒443, 2014.
    [38] O Shchepelina, V Kozlovskaya, S Singamaneni, E Kharlampieva, VV Tsukruk. Replication of anisotropic dispersed particulates and complex continuous templates. Journal of Materials Chemistry, 20, 6587‒6603, 2010.
    [39] Y Wang, L Wang, H Chen, X Hu, S Ma. Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal–metalloporphyrin framework modified electrode. ACS Applied Materials & Interfaces, 8, 18173‒18181, 2016.
    [40] DM Kim, YB Shim. Disposable amperometric glycated hemoglobin sensor for the finger prick blood test. Analytical Chemistry, 85, 6536‒6543, 2013.
    [41] RMT Rodríguez, VRV Montiel, S Campuzano, MF Dinia, R Barderas, PSS Acosta, JJ Montoya, JM Pingarron. Fast electrochemical miRNAs determination in cancer cells and tumor tissues with antibody-functionalized magnetic microcarriers. ACS Sensors, 1, 896‒903, 2016.
    [42] X Yang, YQ Yu, LZ Peng, YM Lei, YQ Chai, R Yuan, Y Zhuo. Strong electrochemiluminescence from MOF accelerator enriched quantum dots for enhanced sensing of trace cTnI. Analytical Chemistry, 90, 3995‒4002, 2018.
    [43] CH Su, CL Sun, YC Liao. Printed combinatorial sensors for simultaneous detection of ascorbic acid, uric acid, dopamine, and nitrite. ACS Omega, 2, 4245‒4252, 2017.
    [44] J Jun, J Oh, DH Shin, SG Kim, JSe Lee, W Kim, J Jang. Wireless, room temperature volatile organic compound sensor based on polypyrrole nanoparticle immobilized ultrahigh frequency radio frequency identification tag. ACS Applied Materials & Interfaces, 8, 33139‒33147, 2016.
    [45] A Gao, N Lu, Y Wang, T Li. Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Scientific Reports, 6, 22554‒22562, 2016.
    [46] D Sarkar, W Liu, X Xie, AC Anselmo, S Mitragotri, K Banerjee. MoS2 field-effect transistor for next-generation label-free biosensors. Acs Nano, 8, 3992‒4003, 2014.
    [47] M Kaisti. Detection principles of biological and chemical FET sensors. Biosensors & Bioelectronics, 98, 437‒448, 2017.
    [48] J Jun, JS Lee, DH Shin, J Jang. Aptamer-functionalized hybrid carbon nanofiber FET-type electrode for a highly sensitive and selective platelet-derived growth factor biosensor. ACS Applied Materials & Interfaces, 6, 13859‒13865, 2014.
    [49] H Xie, YT Li, YM Lei, YL Liu, MM Xiao, C Gao, DW Pang, WH Huang, ZY Zhang, GJ Zhang. Real-time monitoring of nitric oxide at single-cell level with porphyrin-functionalized graphene field-effect transistor biosensor. Analytical Chemistry, 88, 11115‒11122, 2016.
    [50] S Chena, Y Song, F Shi, Y Liu, Q Ma. Sensitive detection of picric acid based on creatinine-capped solid film assembled by nitrogen-doped graphene quantum dots and chitosan. Sensors and Actuators B, 231, 634‒640, 2016.
    [51] J Aleksander. Efficiency of Anti-Stokes Fluorescence in Dyes. Nature, 131, 839‒840, 1933.
    [52] Y Yanase, T Hiragun, K Ishii, T Kawaguchi, T Yanase, M Kawai, K Sakamoto, M Hide. Surface plasmon resonance for cell-based clinical diagnosis. Sensors, 14, 4948‒4959, 2014.

    [53] KS Lee, M Lee, KM Byun, IS Lee. Surface plasmon resonance biosensing based on target-responsive mobility switch of magnetic nanoparticles under magnetic fields. Journal of Materials Chemistry, 21, 5156‒5162, 2011.
    [54] https://en.wikipedia.org/wiki/Raman_spectroscopy.
    [55] S Pal, S Lohar, M Mukherjee, P Chattopadhyay, K Dhara.A fluorescent probe for the selective detection of creatinine in aqueous buffer applicable to human blood serum. Chemical Communication, 52, 13706‒13709, 2016.
    [56] EP Randviir, DK Kampouris, CE Banks. An improved electrochemical creatinine detection method via a Jaffé-based procedure. Analyst, 138, 6565‒6572, 2013.
    [57] P.S Sharma, D Lakshmi, BB Prasad. Highly sensitive and selective detection of creatinine by combined use of MISPE and a complementary MIP-Sensor. Chromatographia, 65, 419‒427, 2007.
    [58] WR Araújo, MO Salles, TRLC Paixão. Development of an enzymeless electroanalytical method for the indirect detection of creatinine in urine samples. Sensors and Actuators B, 173, 847‒851, 2012.
    [59] VM Zhybak, V Beni, MY Vagin, E Dempsey, APF Turner, Y Korpan. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosensors and Bioelectronics, 77, 505‒511, 2016.
    [60] P Chen, Y Peng, M He, XC Yan, Y Zhang, YN Liu. Sensitive electrochemical detection of creatinine at disposable screen-printed carbon electrode mixed with ferrocenemethanol. International Journal of Electrochemical Science, 8, 8931‒8939, 2013.
    [61] JR Delanghe, MM Speeckaert. Creatinine determination according to Jaffé‒what does it stand for ?. NDT Plus, 4, 83‒86, 2011.
    [62] AR Butler, C Glidewell. Creatinine: an examination of its structure and some of its reactions by synergistic use of MNDO calculations and nuclear magnetic resonance spectroscopy. Journal of American Chemical Society, Perkin Transactions 2, 0, 1465‒1467, 1985.
    [63] T Tsuchida, K Yoda. Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum. Clinical Chemistry, 29, 51‒55, 1983.
    [64] T Uwajima, O Terada. Properties of crystalline creatinine deiminase from corynebacterium lilium. Agricultural and Biological Chemistry, 44, 1787‒1792, 1980.
    [65] AJ Killard, MR Smyth. Creatinine biosensors: principles and designs. Trends in Biotechnology, 18, 433‒437, 2000.
    [66] M Yasuhara, S Fujita, K Arisue, K Kohda, C Hayashi. A new enzymatic method to determine creatine. Clinica Chimica Acta, 122, 181‒188, 1982.
    [67] CJ Huang, JL Lin, PH Chen, MJ Syu, GB Lee. A multifunctional electrochemical sensing system using microfluidic technology for the detection of urea and creatinine. Electrophoresis,32, 931‒938, 2011.
    [68] EP Randviir, CE Banks. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Analytical Methods, 5, 1098‒1115, 2013.
    [69] 柯定賢。合成螢光單體以製備具螢光之模版高分子膜用於螢光式感測肌酸酐。國立成功大學化工系碩士學位論文,2009。
    [70] 張詠順。肌酸酐模版材料之製備及對肌酸酐之吸附探討。 國立成功大學化工系碩士學位論文,2006。
    [71] 許庭榕。以分子模版技術用於螢光式與電化學阻抗式分析感測肌酸酐。國立成功大學化工系碩士學位論文,2006。
    [72] DH Choi, Y Li, GR Cutting, PC Searson. A wearable potentiometric sensor with integrated salt bridge for sweat chloride measurement. Sensors and Actuators B, 250, 673‒678, 2017.
    [73] SR Phillips, LJ Wilson, RF Borkman. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins. Current Eye Research, 5, 611-620, 1986.

    無法下載圖示 校內:2028-08-13公開
    校外:2028-08-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE