| 研究生: |
郝禹廸 Hao, Yu-Ti |
|---|---|
| 論文名稱: |
以呼拉圈運動型式之獵能器增加船舶橫搖動能之擷取 A Novel Eccentric Disk Revolving in a Hula-hoop Motion to Enlarge Energy Harvesting from Ship Rolling Motion |
| 指導教授: |
沈聖智
Shen, Sheng-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 獵能器 、船舶橫搖運動 、磁路設計 、呼拉圈運動 |
| 外文關鍵詞: | Energy harvester, Hula-hoop motion, Ship rolling |
| 相關次數: | 點閱:85 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文設計使用呼拉圈運動型式的獵能器,放在船舶上擷取波浪造成船體運動的能量,再將此動能轉為電能。磁路使用Halbach array的磁鐵排列方式,增強線圈放置側的磁力,並進一步模擬不同磁鐵尺寸對發電量差異。Halbach array磁鐵排列方式經過適當的尺寸設計後,可提升約14.3%發電量。
首先分析船舶在海上航行時的運動狀況,其中橫搖運動阻尼較低,可以產生較大的動能,其橫搖頻率能量主要分布在0.15到0.3 Hz之間。接著設計獵能器為偏心系統,並推導數學模型,調整適當配重塊位置可使獵能器產生呼拉圈運動,提高發電量。模擬在不同船舶不同海況下獵能器產生呼拉圈運動的狀況,並且比較不同配重塊位置獵能器發電量的差異,模擬適當配重塊位置輸出功率約為2 mW可提升約10倍發電效率。再來用近似解對比數值解結果,驗證方程式正確性。最後實驗與模擬發電量誤差不超過10%。實驗結果在橫搖頻率0.3 Hz橫搖角度15度下可以產生約1.1 V電量。當負載電阻為430歐姆時,有最大功率輸出約2.05 mW。
This research developed an eccentric disk and novel circular Halbach array to harvest wave energy from the rolling motion of a ship. The designed eccentric disk revolves in a motion that mimics a hula-hoop at higher angular speeds than eccentric disks oscillate normally having. The power output of the eccentric disk was approximately 2.05 mW. The proposed energy harvester can serve as a back-up power source during emergencies.
【1】 羅志宏,船舶在波浪中之非線性運動操控模式之探討,國立成功大學系統及船舶機電工程學系,博士論文,2006。
【2】 江建輝,船舶於不規則波浪中之虛擬動態模擬之研究,國立成功大學系統及船舶機電工程學系,碩士論文,2004。
【3】 F. T. Han, “The Accurate Calculation and Application of Inclination Center,” Port Engineering Technology, Vol. 1, No. 1, pp. 37-40, 1999.
【4】 J. L. Sheng, Y. X. Teng, J. F. Xin, “Study on Safety of Ship Maneuverability in Complex Environmental Conditions,” Management and Service Science, Vol. 1, No. 1, pp. 1-4, 2010.
【5】 陳建志,船舶於波浪中之參數橫搖運動分析,國立高雄海洋科技大學造船及海洋工程研究所,碩士論文,2012。
【6】 楊憲章,不同浪向的不規則波作用下繫泊船舶動態特性的差異,港口工程,第一卷,第二期,39-45頁,1992。
【7】 M.A.S. Neves, C. A. Rodriguez, “On Unstable Ship Motions Resulting from Strong non-Linear Coupling,” Ocean Engineering, Vol. 33, No. 14, pp. 1853-1883, 2006.
【8】 S. C. Lee, Y. B. Kim, J. S. Goo, “Analysis of Motion Response of Barge Ships in Regular Waves,” Control, Automation and Systems, Vol. 1, No. 1, pp. 1920-1922, 2012.
【9】 顏至鴻,以船體動態反應預估遭遇海況之研究,國立成功大學系統及船舶機電工程學系,碩士論文,2009。
【10】 龐永杰,徐玉如,倪紹毓,賀敬席,船舶在複雜海況下的實時運動仿真,船舶工程,第一卷,第一期,12-15頁,1998。
【11】 S. Surendran, J. Venkata Ramana Reddy, “Numerical Simulation of Ship Stability for Dynamic Environment,” Ocean Engineering, Vol. 30, No. 10, pp. 1305-1317, 2003.
【12】 L. Q. Liu, Y. G. Tang, R. Y. Zhang, “Numerical Simulation of Random Rolling Response of Ship with Water on Deck,” Journal of Tianjin University, Vol. 1, No. 2, pp. 571-576, pp. 571-576, 2011.
【13】 M.A.S. Neves, N.A. Pérez, L. Valerio, “Stability of Small Fishing Vessels in Longitudinal Waves,” Vol. 26, No. 12, pp.1389-1419, Ocean Engineering, 1999.
【14】 M.A.S. Neves, N. Pérez, O. Lorca, “Analysis of Roll Motion and Stability of a Fishing Vessel in Head Seas,” Ocean Engineering, Vol. 30, No.7, pp.921-935, 2003.
【15】 H. Li, C. Guo, X. F. Li, “Analysis and Prediction of Ship Roll Motion Based on the Theory of Wavelet Transform,” Journal of Dalian Maritime University, Vol. 36, No. 1, pp. 5-8, 2010.
【16】 卓胡誼,黃文川,呂世智,吳春吉,沒有旋轉發電機的波浪發電方式,太陽能及新能源學刊,第十卷,第二期,30-37頁,2005。
【17】 D. Symonds, E. Davis, R. C. Ertekin, “Low-Power Autonomous Wave Energy Capture Device for Remote Sensing and Communications Applications,” Energy Conversion Congress and Exposition, Vol. 1, No. 1, pp. 2392-2396, 2010.
【18】 D. Elwood, S. C. Yim, J. Prudell, C. Stillinger, A. Jouanne, T. Brekken, A. Brown, R. Paasch, “Design, Construction, and Ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off,” Renewable Energy, Vol. 35, No. 2, pp. 348-354, 2010.
【19】 R. B. Ummaneni, J. E. Brennvall, R. Nilssen, “Convert Low Frequency Energy from Wave Power Plant to High Frequency Energy in Linear Electrical Generator with Gas Springs,” Power System Technology and IEEE Power India Conference, Vol. 1, No. 1, pp. 1-5, 2008.
【20】 B. F. Han, J. K. Chu, Y. S. Xiong, Y. Fei, “Modeling and Simulation of the Novel Wave Energy Piezoelectric Generator,” Electrical and Control Engineering, Vol. 1, No. 1, pp.1621-1624, 2011.
【21】 T. T. Toh, P D. Mitcheson, L. Dussud, S. W. Wright, A. S. Holmes, “Electronic Resonant Frequency Tuning of a Marin Energy Harvester,” PowerMEMS, Vol. 1, No. 1, pp.383-386, 2011.
【22】 S. M. Sharkh, M. Hendijanizadeh, M. Moshrefi-Torbati, M. Russell, “An Inertial Coupled Marine Power Generator for Small Boats,” Clean Electrical Power, Vol. 1, No. 1, pp.367-370, 2011.
【23】 L. Wang, S. S. Chen, Y. W. Chen, K. H. Wang, J. D. Lee, C. C. Huang, W. J. Lee, “Energy Saving of a Prototype Fishing Boat Using a Small Wind Turbine Generator: Practical Installation and Measured Results,” Power & Energy Society General Meeting, Vol. 2, No. 1, pp. 1-6, 2009.
【24】 J. Rastegar, C. Pereira, H. L. Nguyen, “Piezoelectric-Based Power Sources for Harvesting Energy from Platforms with Low Frequency Vibration,” Smart Structures and Materials 2006: Industrial and Commercial Applications of Smart Structures Technologies, Vol. 6171, No. 1, 2006.
【25】 G. L. Guizzi, M. Manno, G. Manzi, M. Salvatori, D. Serpella, ”Preliminary study on a kinetic energy recovery system for sailing yachts,” Renewable Energy, Vol. 62, No. 1, pp. 216-225, 2014.
【26】 N. Okada, S. Yabe, H. Fujimoto, M. Murai, “Experiments on floating wave-power generation using piezoelectric elements and pendulums in the water tank,” Oceans, Vol. 10, No. 1, pp. 1-8, 2012.
【27】 楊翔淇,以船體運動擷取波浪能之技術研究,國立成功大學系統及船舶機電工程學系,碩士論文,2012。
【28】 Y. J. Wang, C. D. Chen, C. K. Sung, “Design of a frequency-adjusting device for harvesting energy from a rotating wheel,” Sensors and Actuators A: Physical, Vol. 159, No. 2, pp. 196-203, 2010.
【29】 C. X. Lu, C. C. Wang, C. K. Sung, “Dynamic Analysis of a Motion Transformer Mimicking a Hula Hoop,” Journal of Vibration and Acoustics of the ASME, Vol. 133, No. 1, pp. 14501, 2011.
【30】 C. H. Lu, Y. J. Wang, C. K. Sung, C. P. Chao, “A Hula-Hoop Energy-Harvesting System,” Magnetics, Vol. 47, No. 10, pp. 2395-2398, 2011.
【31】 Y. J. Wang, C. D. Chen, C. K. Sung, C. Li, “Natural Frequency Self-tuning Energy Harvester Using a Circular Halbach array Magnetic disk,” Journal of Intelligent Material Systems and Structures, Vol. 23, No. 8, pp. 933-943, 2012.
【32】 H.Allag, J. P. Yonnet, M.E.H. Latreche, “3D analytical calculation of forces between linear Halbach-type permanent-magnet arrays,” Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, Vol. 10, No. 1, pp. 1-6, 2009.
【33】 W. Robertson, B. Cazzolato, A. Zander, “Parameters for Optimizing the Forces Between Linear Multipole Magnet Arrays, Magentics Letters, Vol. 1, No. 1, pp. 0500304-0500304, 2010.
【34】 黃仲賢,低轉速平面發電機研究,國立中山大學機械與機電工程學系學系,碩士論文,2010。
【35】 謝旻甫,漁船減搖系統動力與控制單元之整合設計,結案報告(94農科-14.3.2-漁-F1),2005。
【36】 http://www.cwb.gov.tw/V7/observe/marine/
【37】 王栢村,實驗模態分析,課程講義,第二章。
【38】 蔡金城,章清隆,簡光志,航海學概要,教育部,2009。
【39】 http://en.wikipedia.org/wiki/Electromagnetic_induction
【40】 http://zh.wikipedia.org/wiki/%E6%B3%95%E6%8B%89%E7%AC%AC%E7%94%B5%E7%A3%81%E6%84%9F%E5%BA%94%E5%AE%9A%E5%BE%8B
【41】 余家和,噴覆成型釹鐵硼合金組織與性質的探討,國立成功大學材料科學及工程學系,碩士論文,2004。
【42】 J. B. Wang, D. Howe, “Tubular Modular Permanent-Magnet Machines Equipped With Quasi-Halbach Magnetized Magnets—Part I: Magnetic Field Distribution, EMF, and Thrust Force,” Transactions on Magnetics, Vol. 41, No. 9, pp. 2470-2478, 2005.
【43】 http://www.csbcnet.com.tw/csbc/Products/Products01_new.aspx
【44】 張文成,高性能稀土永久磁石之研究與發展,物理雙月刊,第二十六卷,第六期,570-583頁,2000。
【45】 L. R. Moskowitz, “Permanent Magnet Selection and Design Handbook,” Krieger, 1995.
【46】 鍾義,機件原理,台科大,第十四章,2014。
校內:2016-08-14公開