簡易檢索 / 詳目顯示

研究生: 林汶燕
LIM, BOON-YUEAN
論文名稱: 功能性分析線蟲體內IGLR-2對出血性大腸桿菌感染所扮演的角色
Functional Analysis of the Role of Caenorhabditis elegans IGLR-2 during Enterohemorrhagic E. coli Infection
指導教授: 陳昌熙
Chen, Chang-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 61
中文關鍵詞: 出血性大腸桿菌線蟲先天免疫模式辨認受體
外文關鍵詞: Enterohemorrhagic E. coli (EHEC), C. elegans, innate immunity, pattern recognition receptor (PRR)
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 出血性大腸桿菌為革蘭氏陰性桿菌,其主要血清型為O157:H7,人類通常透過攝入被污染的水源或食物而受到感染。當人類受到出血性大腸桿菌感染時會出現出血性下痢,溶血性尿毒症,甚至是腎衰竭等嚴重症狀。經過實驗室之前的研究發現線蟲 (Caenorhabditis elegans) 可被出血性大腸桿菌感染及毒殺,並會透過在演化上具有高度保留性的p38 MAPK先天免疫路徑來抵禦出血性大腸桿菌的感染。在多細胞生物體內具有一種會偵測病原或微生物相關分子模式及損傷相關分子模式並且會啟動體內免疫反應的接收器,稱為模式辨認受體。但是,線蟲用來偵測病原菌表面分子及可調控先天免疫路徑的模式辨認受體尚未被釐清。因此,我們將線蟲體內帶有模式辨認受體保守性結構域的基因建構成RNAi株庫並進行篩選。最後,我們發現在感染出血性大腸桿菌時,唯有iglr-2被抑制後與其對照組相比線蟲壽命有明顯縮短的結果,因測推測iglr-2為最具潛力的模式辨認受體。IGLR-2 帶有富含亮氨酸重複序列及免疫球蛋白的結構域,且其和馬 (E. caballus) 的類鐸受體二具有同源性。先前實驗室已利用CRISPR-Cas9的技術建立了iglr-2有缺失的突變蟲株,發現 iglr-2功能喪失的突變株對於血性大腸桿菌的感染比起野生型株N2顯得更敏感,而iglr-2過表現的蟲株則對出血性大腸桿菌具有抗性。因此,我們的目標是進一步了解線蟲體內iglr-2對於抵抗出血性大腸桿菌感染時所扮演的角色及其調控先天免疫路徑的機制。實驗結果發現線蟲的iglr-2的表現量與動物本身進食的情況與壽命並無直接關係。另外,iglr-2過表現的蟲株並不會對所有環境壓力刺激都具有抗性,是只有被致病菌感染時才出現的表徵。另外,會表現在神經細胞中的iglr-2缺失後,會使線蟲失去避開致病菌的能力。實驗中也觀察到原本對出血性大腸桿菌感染具有抗性的iglr-2過表現蟲株,在給予出血性大腸桿菌感染的同時抑制參與在p38 MAPK的基因後,蟲子的壽命會明顯縮短,然而,iglr-2突變株也有比較短命的結果,顯示了iglr-2與p38 MAPK都會幫助線蟲抵抗出血性大腸桿菌的感染但不是藉由共同路徑達到的結果。總結到目前的實驗結果,我們推測iglr-2這具潛力的模式辨認受體是參與在線蟲避開和抵禦出血性大腸桿菌感染過程所需的重要因子,並且是藉由活化在演化上具高度保留性的p38 MAPK或未知的先天免疫路徑而產生的效果。

    Enterohemorrhagic Escherichia coli (EHEC) is a gram-negative bacterium and the major serotype is O157:H7. Humans usually get infected with EHEC by uptaking EHEC contaminated water or food. EHEC infections can cause life-threatening diseases, such as hemolytic uremic syndrome (HUS) and hemorrhagic diarrhea, especially in young children and the elderly. Our previous studies demonstrated that EHEC infected and killed Caenorhabditis elegans. Moreover, C. elegans activated the p38 MAPK innate immune pathway to defend EHEC infection. The receptors for metazoans to detect pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs) and to activate immune response are called as pattern recognition receptors (PRRs). However, the C. elegans PRRs for bacterial pathogens detection and innate immunity regulation remain largely unknown. We therefore constructed a focused RNAi library to screen for C. elegans genes with PRRs conserved domains in previous. From the genetic screen, we identified the iglr-2 gene as a potential PRR candidate which showed significantly decreased in lifespan compared to its empty factor L4440 when it exposed to EHEC infection. IGLR-2 contains leucine-rich repeat (LRR) and immunoglobulin-like (Ig-like) domains and is homologous to the E. caballus (horse) Toll-like receptor 2. We generated iglr-2 deletion mutant by the CRISPR-Cas9 technology and found that the iglr-2 null mutant strain is more susceptible to EHEC infection compared to the parental wild-type N2 strain. Moreover, the iglr-2 overexpression strain is more resistant to EHEC. Here, we focused to identify the character and mechanism of innate immune regulation of iglr-2, which may be against EHEC infection. Previous study demonstrated that iglr-2 expression pattern was co-localized with some neurons such as PVD, OLL, AFD and AWB. From our results, C. elegans lost the ability to avoid pathogens when it lost the iglr-2 function specifically in neurons. The iglr-2 overexpression strain, which was more resistant to EHEC infection originally, showed more susceptibility to EHEC infection upon knockdown of the p38 MAPK cascade. And the iglr-2 null mutant showed the similar outcome. Furthermore, we found that iglr-2 did not control the physiological characteristics and responses to general stressors challenges in C. elegans. The iglr-2 overexpression strains are resistant to EHEC infection only; it does not confer a general resistant phenotype. Taken all together, our data suggested that iglr-2, a potential PRR, plays an important role in C. elegans to defend EHEC infection by activating the pathogen-avoidance behavior and immune responses via, at least in part, p38 MAPK pathway or controlling unidentified immune cascades.

    摘要 I Abstract III Acknowledgements V Introductions 1 Materials and methods 9 C. elegans and bacterial strains 9 Pathogen avoidance behavior assays 10 One generation RNA interference (RNAi) assays 10 Analysis of phospho-p38 expression level 11 Assays for general physiology 12 A. Pumping rate analysis 12 B. Developmental time 12 C. Body length analysis 12 D. Brood size analysis 12 Assays for general stresses 14 A. H2O2assays 14 B. CuSO4assays 14 C. Thermotolerance assays 14 D. Osmotic pressure assays 15 Results 16 The pathogen-avoidance behavior of the iglr-2 null mutant and iglr-2 overexpression strains to pathogens 16 The survival assays of the iglr-2 null mutant and iglr-2 overexpression strains during EHEC infection 17 The survival assays of p38 pathway knockdown in iglr-2 null mutant and iglr-2 overexpression strains during EHEC infection 19 The expression level of phospho-p38 (p-p38) in C. elegans 20 General physiology of the iglr-2 null mutant and iglr-2 overexpression strains 21 Pumping rate 21 Developmental time 21 Body length 22 Brood size 22 The susceptibility to general stresses of the iglr-2 null mutant and iglr-2 overexpression strains 23 Conclusions 25 Discussions 26 References 30 Tables 34 Table 1. C. elegans, bacterial strains and plasmids were used in this study. 34 Table 2. The statistics of survival curves 35 A. survival information of figure 2A and 2B 35 B. survival information of figure 3A and 3B 35 C. survival information of figure 3C and 3D 36 D. survival information of figure 3E and 3F 36 E. survival information of figure 3G and 3H 36 F. survival information of figure S1A and S1B 37 G. survival information of figure S1C and S1D 37 H. survival information of figure S1E and S1F 37 Figures 38 Fig. 1 The pathogen-avoidance behavior of the iglr-2 null mutant and iglr-2 overexpression strains to pathogens 38 Fig. 2 The survival assays of TLR pathway knockdown in iglr-2 null mutant and iglr-2 overexpression strains during EHEC infection 41 Fig. 3 The survival assays of p38 pathway knockdown in iglr-2 null mutant and iglr-2 overexpression strains during EHEC infection 43 Fig. 4 The expression level of phospho-p38 (p-p38) in C. elegans 48 Fig. 5 General physiology of the iglr-2 null mutant and iglr-2 overexpression strains 50 Fig. 6 The susceptibility to general stresses of the iglr-2 null mutant and iglr-2 overexpression strains 53 Fig. 7 Model of defending EHEC infection that regulated by IGLR-2 in C. elegans 57 Supporting information 58 Fig. S1 The survival assays of knockdowning different pathways in iglr-2 null mutant and iglr-2 overexpression strains during EHEC infection 58

    1. Pennington H. Escherichia coli O157. Lancet (London, England) 376, 1428-1435 (2010).
    2. Goosney DL, Gruenheid S, Finlay BB. Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annual review of cell and developmental biology 16, 173-189 (2000).
    3. Donnenberg MS, Tzipori S, McKee ML, O'Brien AD, Alroy J, Kaper JB. The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. The Journal of clinical investigation 92, 1418-1424 (1993).
    4. Panda A, et al. Escherichia coli O157:H7 infection in Dutch belted and New Zealand white rabbits. Comparative medicine 60, 31-37 (2010).
    5. Golan L, Gonen E, Yagel S, Rosenshine I, Shpigel NY. Enterohemorrhagic Escherichia coli induce attaching and effacing lesions and hemorrhagic colitis in human and bovine intestinal xenograft models. Disease models & mechanisms 4, 86-94 (2011).
    6. Mohawk KL, O'Brien AD. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. Journal of biomedicine & biotechnology 2011, 258185 (2011).
    7. Renter DG, Sargeant JM, Oberst RD, Samadpour M. Diversity, frequency, and persistence of Escherichia coli O157 strains from range cattle environments. Applied and environmental microbiology 69, 542-547 (2003).
    8. Waterfield NR, Wren BW, Ffrench-Constant RH. Invertebrates as a source of emerging human pathogens. Nature reviews Microbiology 2, 833-841 (2004).
    9. Kenney SJ, Anderson GL, Williams PL, Millner PD, Beuchat LR. Persistence of Escherichia coli O157:H7, Salmonella Newport, and Salmonella Poona in the gut of a free-living nematode, Caenorhabditis elegans, and transmission to progeny and uninfected nematodes. International journal of food microbiology 101, 227-236 (2005).
    10. Anderson GL, Kenney SJ, Millner PD, Beuchat LR, Williams PL. Shedding of foodborne pathogens by Caenorhabditis elegans in compost-amended and unamended soil. Food microbiology 23, 146-153 (2006).
    11. Irazoqui JE, Urbach JM, Ausubel FM. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nature reviews Immunology 10, 47-58 (2010).
    12. Alegado RA, Campbell MC, Chen WC, Slutz SS, Tan MW. Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model. Cellular microbiology 5, 435-444 (2003).
    13. Alegado RA, Chin CY, Monack DM, Tan MW. The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cellular microbiology 13, 1618-1637 (2011).
    14. Feinbaum RL, et al. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS pathogens 8, e1002813 (2012).
    15. Wu K, et al. A correlative analysis of epidemiologic and molecular characteristics of methicillin-resistant Staphylococcus aureus clones from diverse geographic locations with virulence measured by a Caenorhabditis elegans host model. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 32, 33-42 (2013).
    16. Engelmann I, et al. A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PloS one 6, e19055 (2011).
    17. Evans EA, Kawli T, Tan MW. Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS pathogens 4, e1000175 (2008).
    18. Marsh EK, van den Berg MC, May RC. A two-gene balance regulates Salmonella typhimurium tolerance in the nematode Caenorhabditis elegans. PloS one 6, e16839 (2011).
    19. O'Rourke D, Baban D, Demidova M, Mott R, Hodgkin J. Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome research 16, 1005-1016 (2006).
    20. Simonsen KT, Moller-Jensen J, Kristensen AR, Andersen JS, Riddle DL, Kallipolitis BH. Quantitative proteomics identifies ferritin in the innate immune response of C. elegans. Virulence 2, 120-130 (2011).
    21. Gravato-Nobre MJ, Hodgkin J. Caenorhabditis elegans as a model for innate immunity to pathogens. Cellular microbiology 7, 741-751 (2005).
    22. Kurz CL, Ewbank JJ. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nature reviews Genetics 4, 380-390 (2003).
    23. Partridge FA, Gravato-Nobre MJ, Hodgkin J. Signal transduction pathways that function in both development and innate immunity. Developmental dynamics : an official publication of the American Association of Anatomists 239, 1330-1336 (2010).
    24. Troemel E. Host detection of pathogen-induced translational inhibition: a new pathogen-specific branch of the innate immune system? Future microbiology 7, 1133-1136 (2012).
    25. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical microbiology reviews 22, 240-273, Table of Contents (2009).
    26. Stuart LM, Paquette N, Boyer L. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nature reviews Immunology 13, 199-206 (2013).
    27. Gust AA, Willmann R, Desaki Y, Grabherr HM, Nurnberger T. Plant LysM proteins: modules mediating symbiosis and immunity. Trends in plant science 17, 495-502 (2012).
    28. Spaink HP. Specific recognition of bacteria by plant LysM domain receptor kinases. Trends in microbiology 12, 201-204 (2004).
    29. Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nature reviews Immunology 9, 465-479 (2009).
    30. Figdor CG, van Kooyk Y, Adema GJ. C-type lectin receptors on dendritic cells and Langerhans cells. Nature reviews Immunology 2, 77-84 (2002).
    31. Sato S, St-Pierre C, Bhaumik P, Nieminen J. Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunological reviews 230, 172-187 (2009).
    32. Rabinovich GA, Toscano MA. Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nature reviews Immunology 9, 338-352 (2009).
    33. Schumann RR. Host cell-pathogen interface: molecular mechanisms and genetics. Vaccine 22 Suppl 1, S21-24 (2004).

    34. Schutt C. Fighting infection: the role of lipopolysaccharide binding proteins CD14 and LBP. Pathobiology : journal of immunopathology, molecular and cellular biology 67, 227-229 (1999).
    35. Dushay MS, Asling B, Hultmark D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proceedings of the National Academy of Sciences of the United States of America 93, 10343-10347 (1996).
    36. Lemaitre B, et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proceedings of the National Academy of Sciences of the United States of America 92, 9465-9469 (1995).
    37. Kurata S. Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC. International immunology 22, 143-148 (2010).
    38. Dziarski R, Gupta D. Mammalian PGRPs: novel antibacterial proteins. Cellular microbiology 8, 1059-1069 (2006).
    39. Dziarski R, Gupta D. The peptidoglycan recognition proteins (PGRPs). Genome biology 7, 232 (2006).
    40. Schulenburg H, Kurz CL, Ewbank JJ. Evolution of the innate immune system: the worm perspective. Immunological reviews 198, 36-58 (2004).
    41. Pukkila-Worley R, Ausubel FM, Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS pathogens 7, e1002074 (2011).
    42. Chou TC, et al. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cellular microbiology 15, 82-97 (2013).
    43. Liou B-Y. Genome-wide analysis of the host responses against bacterial virulence determinants in C. elegans. In: Department of Biochemistry and Molecular Biology. National Cheng Kung University (2013).
    44. Wormbase. http://www.wormbase.org/species/c_elegans/gene/WBGene00022580#0-9g-3.
    45. Hsu Y-C. Genetic dissection of the potential pattern recognition receptor IGLR-2 for enterohemorrhagic E. coli immunity in Caenorhabditis elegans. In: Department of Biochemistry and Molecular Biology. National Cheng Kung University (2015).
    46. Brenner S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).
    47. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature methods 10, 741-743 (2013).
    48. Kadandale P, Chatterjee I, Singson A. Germline transformation of Caenorhabditis elegans by injection. Methods in molecular biology (Clifton, NJ) 518, 123-133 (2009).
    49. Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. The EMBO journal 10, 3959-3970 (1991).
    50. Strockbine NA, Marques LR, Newland JW, Smith HW, Holmes RK, O'Brien AD. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infection and immunity 53, 135-140 (1986).
    51. Perna NT, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529-533 (2001).

    52. Chang HC, Paek J, Kim DH. Natural polymorphisms in C. elegans HECW-1 E3 ligase affect pathogen avoidance behaviour. Nature 480, 525-529 (2011).
    53. Brandt JP, Ringstad N. Toll-like Receptor Signaling Promotes Development and Function of Sensory Neurons Required for a C. elegans Pathogen-Avoidance Behavior. Current biology : CB 25, 2228-2237 (2015).
    54. Bischof LJ, Huffman DL, Aroian RV. Assays for toxicity studies in C. elegans with Bt crystal proteins. Methods in molecular biology (Clifton, NJ) 351, 139-154 (2006).
    55. Kao CY, et al. Global functional analyses of cellular responses to pore-forming toxins. PLoS pathogens 7, e1001314 (2011).
    56. Kroetz SM, Srinivasan J, Yaghoobian J, Sternberg PW, Hong RL. The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus. PloS one 7, e34464 (2012).
    57. Bischof LJ, et al. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS pathogens 4, e1000176 (2008).
    58. Lamitina ST, Morrison R, Moeckel GW, Strange K. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. American journal of physiology Cell physiology 286, C785-791 (2004).
    59. Schulenburg H, Ewbank JJ. The genetics of pathogen avoidance in Caenorhabditis elegans. Molecular microbiology 66, 563-570 (2007).
    60. Visvikis O, et al. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40, 896-909 (2014).
    61. Avery L, Shtonda BB. Food transport in the C. elegans pharynx. The Journal of experimental biology 206, 2441-2457 (2003).
    62. Gardner M, Rosell M, Myers EM. Measuring the effects of bacteria on C. elegans behavior using an egg retention assay. Journal of visualized experiments : JoVE, e51203 (2013).
    63. McKean KA, Nunney L. Increased sexual activity reduces male immune function in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 98, 7904-7909 (2001).
    64. Miyata S, Begun J, Troemel ER, Ausubel FM. DAF-16-dependent suppression of immunity during reproduction in Caenorhabditis elegans. Genetics 178, 903-918 (2008).
    65. Meisel JD, Kim DH. Behavioral avoidance of pathogenic bacteria by Caenorhabditis elegans. Trends in immunology 35, 465-470 (2014).
    66. Zhang Y, Lu H, Bargmann CI. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438, 179-184 (2005).
    67. Hahm JH, Kim S, Paik YK. GPA-9 is a novel regulator of innate immunity against Escherichia coli foods in adult Caenorhabditis elegans. Aging cell 10, 208-219 (2011).
    68. Schulenburg H, Hoeppner MP, Weiner J, 3rd, Bornberg-Bauer E. Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology 213, 237-250 (2008).
    69. Youngman MJ, Rogers ZN, Kim DH. A decline in p38 MAPK signaling underlies immunosenescence in Caenorhabditis elegans. PLoS genetics 7, e1002082 (2011).
    70. Papp D, Csermely P, Soti C. A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS pathogens 8, e1002673 (2012).

    無法下載圖示 校內:2021-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE