簡易檢索 / 詳目顯示

研究生: 陳嬿妃
Chen, Yen-Fei
論文名稱: 熱傳導問題之形狀及拓樸設計最佳化新法—固體體積函數法
Novel Method for Shape and Topology Optimization of Heat Conductive Objects—Volume-of-Solid Method
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 117
中文關鍵詞: 最佳化形狀拓樸設計熱傳導路徑固體體積函數法快速共軛梯度法
外文關鍵詞: Optimal shape, Topology design, Conductive path, Volume-of-solid function method, SCGM
相關次數: 點閱:77下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一創新的拓樸設計方法—固體體積函數法(Volume-of-Solid Method, VOS method),並將固體體積函數法應用於熱傳導路徑之最佳化設計。本研究利用本法設計一最佳路徑可在使用最少材料的情況下,將最大的熱傳量由高溫物件傳到低溫物件。本方法第一步先同時求解固體體積函數及熱傳導方程式,進而得到設計領域的溫度分佈及固體體積函數分佈。本方法第二步以取不同固體體積函數之截斷值(Cut-off value),來得到熱傳路徑的形狀,再以選擇具備最大單位固體材料質量之熱傳率者為最佳之熱傳導路徑形狀。
    透過不同的案例分析來探討固體體積函數法之有效性及可行性,並且結合快速共軛梯度法(Simplified Conjugate-Gradient Method, SCGM)及格點影像法以縮短其求解時間。本法首先應用於求解不同配置的熱傳邊界條件之二維熱傳導問題;其結果顯示本法可預測得到一熱傳導路徑之最佳化形狀。由於固體體積函數法在計算不同熱傳路徑的單位固體質量之熱傳率時,需不斷地執行費時的格點產生程序,本研究結合固體體積函數法、快速共軛梯度法及格點影像取代格點產生程序,可有效地縮短其目標函數之收斂所需時間。
    此外,本研究將固體體積函數法用來最佳化多層金屬複合材料之熱傳導路徑。本研究以銅、鋁、鐵及不鏽鋼等組合的三層金屬複合材料為例,討論其不同組成及不同排列方向之熱傳行為。研究發現本法可彈性應用於不同的目標函數最小化,且可有效地進行提高單位固體質量之熱傳率(Q/m)、單位固體體積之熱傳率(Q/V)、或單位成本之熱傳率(Q/USD)等不同設計目標之設計。

    The aim of this thesis is to develop a novel computational approach, which is based on a non-constrained formulation with a volume-of-solid (VOS) function equation, for topology design of heat conductive solid paths between constant-temperature objects. In the first step of the approach, the distributions of the VOS function and the temperature in the original design domain are carried out by simultaneously solving the VOS function equation and the heat conduction equation. Secondly, the shape outline of the heat conduction path leading to a maximum heat transfer rate per unit solid mass is determined by selecting a cut-off value of the VOS function.
    Validity and capability of the VOS method are investigated and tested by several different cases. However, it is found that with this method one needs to carry out the grid generation repeatedly during the evolution of the shape of the heat conduction paths. Thus, the design process is rather time-consuming. In this regard, the VOS method is improved by introducing the simplified conjugate-gradient method (SCGM) and grid image visualization into the topology design process. This improved approach, VOS+SCGM, is applied to the two-dimensional test cases with various thermal boundary configurations. Results show that the optimal shapes of the heat conduction paths can be more efficiently predicted by using the VOS+SCGM method. In the VOS+SCGM method, the grid generation is no longer required, and instead the grid image visualization is used to portray the shape of the objects.
    Furthermore, the VOS method is applied to optimize the conduction path in laminated metallic materials between unequal isothermal surfaces. Three-layer laminated metallic composite materials which are made of copper, aluminum, stainless steel or iron are considered in this study. Two possible orientations of the composite materials, vertical and horizontal, are investigated. Optimal shapes of the thermal conduction path between different temperature objects are determined toward minimization of the objective function. This approach is able to reach optimal shape corresponding to different objective functions. It implies that the selection of the objective function becomes more flexible. By using this approach, optimal thermal conduction paths leading to maximum heat transfer rate per unit mass (Q/m) , maximum heat transfer rate per unit volume (Q/V) , or maximum heat transfer rate per unit cost (Q/USD) can be readily yielded.

    摘要……………………………………………………………………………I 第一章 前言…………………………………………………………………III 第二章 拓樸設計理論……………………………..………………………….IV 第三章 固體體積函數法之應用………...…………………………………….V 第四章 結合固體積函數法及快速共軛梯度法……………………..……….VI 第五章 多層複合金屬之熱傳導路徑拓樸最佳化…………………………VII 第六章 結論………………………………………..………………………..VIII ABSTRACT…………………………………………………………………....IX 誌謝…………………………………………………………………………..XII CONTENTS………………………………………………………………..XIII LIST OF TABLES……………………………………………………………..XV LIST OF FIGURES…………………………………………...……………..XVI NOMENCLATURE……………………………………………….………..XX CHAPTER 1 INTRODUCTION………………………………………………...1 1.1 Background……………………………………………………………1 1.2 Motivation……………………………………………………………4 1.3 Scope of This Thesis..…………………………………………………8 CHAPTER 2 TOPOLOGY DESIGN THEORY...……………………………..10 2.1 Objective Function Definition …………………………………………10 2.2 Volume-of-Solid Method (VOS Method)…..………………………..…12 CHAPTER 3 APPLICATIONS OF VOLUME-OF-SOLID METHOD…..……21 3.1 Heat Conduction Problems…………………....………………………21 3.2 Volume-of-solid Method….…………………....………………………23 3.3 Results and Discussion…..……………………………………………29 CHAPTER 4 COMBINATION OF VOS AND SCGM METHODS………...…35 4.1 Simplified Conjugate-Gradient Method (SCGM).……………………..35 4.2 VOS+SCGM Method…………...…………………………..………37 4.3 Results and Discussion…..…………………………………………40 CHAPTER 5 TOPOLOGY OPTIMIZATION OF CONDUCTION PATH IN LAMINATED METALS COMPOSITE MATERIALS……………………….45 5.1 Laminated Metallic Materials…...……………………………………45 5.2 VOS Method for Laminated Metals Composite Materials…………..48 5.3 Results and Discussion ………………………………………………54 CHAPTER 6 CONCLUSIONS………………………………………………..60 REFERENCES………………………………………………………………...65 TABLES AND FIGURES …………………………………………………...69 VITA………………………………………………………………….………114 PUBLICATION LIST………………………………………………………...115

    [1] R.V. Rao, V.J. Savsani, D.P. Vakharia, “Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems,” Computer-Aided Design 43 Issue 3 (2011), pp.303315.
    [2] E. Sandgren, “A multi-objective design tree approach for the optimization of mechanisms,” Mechanism and Machine Theory 25 (1990), pp.257272.
    [3] M.Y. Wang, X. Wang, “D. Guo, A level set method for structural topology optimization,” Computational Methods in Applied Mechanics and Engineering 192 (2003), pp.227246.
    [4] Grégoire Allaire, François Jouve, Anca-Maria Toader, “Structural optimization using sensitivity analysis and a level-set method,” Journal of Computational Physics 194 (2004), pp.363393.
    [5] M. Bremicker, P. Y. Papalambros, H. T. Loh, “Solution of mixed-discrete structural optimization problems with a new sequential linearization algorithm,” Computers & Structures 37 (1990), pp.451461.
    [6] T. Gao, W.H. Zhang, J.H. Zhu, Y.J. Xu, D.H. Bassir, “Topology optimization of heat conduction problem involving design-dependent heat load effect,” Finite Elements in Analysis and Design 44 Issue 14 (2008), pp.805813.
    [7] A. Iga, S. Nishiwaki, K. Izui, M. Yoshimura, “Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection,” International Journal of Heat and Mass Transfer 52 (2009), pp.27212732.
    [8] Rogério José Marczak, “Topology optimization and boundary elementsa preliminary implementation for linear heat transfer,” Engineering Analysis with Boundary Elements 31 Issue 9 (2007), pp.793802.
    [9] L. Krog, A. Tucker, M. Kemp, and R. Boyd, “Topology optimization of aircraft wing box ribs,” AIAA-2004-4481, Proc. 10th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Albany, NY (2004).
    [10] M. Zhou, R. Fleury, And W. Dals, “A comprehensive process for composite design optimization,” 4th European Hyperworks Technology Conference, Versailles, France (2010).
    [11] K. Suzuki, N. Kikuchi, “A homogenization method for shape and topology optimization,” Computer Methods in Applied Mechanics and Engineering 93 Issue 3 (1991), pp.291318.
    [12] Z.D. Ma, H.C. Cheng, N. Kikuchi, “Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method,” Computing Systems in Engineering 5 Issue 1 (1994), pp.7789.
    [13] Y.M. Xie, G.P. Steven,” Evolutionary Structural Optimization,” Springer-Verlag, 1997.
    [14] M.P. Bendsøe, O. Sigmund, “Topology Optimization: Theory, Methods and Applications,” Springer, New York, 2003.
    [15] A. Bejan, “Shape and Structure, from Engineering to Nature,” Cambridge University Press, Cambridge, UK, 2000.
    [16] A. Bejan, “Constructal theory network of conducting paths for cooling a heat generating volume,” International Journal of Heat Mass Transfer 40 (1997), pp.799816.
    [17] G.A. Ledezma, A. Bejan, M.R. Errera, “Constructal tree network for heat transfer,” Journal of Applied Physics 82 (1997), pp.89100.
    [18] Z.Y. Guo, X.G. Cheng, Z.Z. Xia, “Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization,” Chinese Science Bulletin 48 (2003), pp.406410.
    [19] C.H. Cheng, M.H. Chang, “Shape design for a cylinder with uniform temperature distribution on the outer surface by inverse heat transfer method,” International Journal of Heat and Mass Transfer 46 (2003), pp.101111.
    [20] C.H. Cheng, M.H. Chang, “Design of irregular slider surface for satisfying specified load demands,” ASME J. Mechanical Design 127 (2005), pp.11841185.
    [21] C.H. Cheng, M.H. Chang, “A simplified conjugate-gradient method for shape identification based on thermal data,” Numerical Heat Transfer B 43 (2003), pp.489507.
    [22] Q. Li, G.P. Steven, Y.M. Xie, and O.M. Querin, “Evolutionary Topology Optimization for Temperature Reduction of Heat Conducting Fields,” International Journal of Heat and Mass Transfer 47 (2004), pp.5071-5083.
    [23] Y.C. Zhang and S.T. Liu, “Design of conducting paths based on topology optimization,” Heat and Mass Transfer 44 (2008), pp.1217-1227.
    [24] M.P. Francois and G. Louis, “Optimal conduction pathways for a heat generating body: a comparison exercise,” International Journal of Heat and Mass Transfer 50 (2007), pp.2996-3006.
    [25] Y.C. Zhang, S.T. Liu, and H. Qiao, “Design of heat conduction structure based on the topology optimization,” Development in Heat Transfer, Ed. by M.A.D.S. Bernardes, InTech, Shanghai (2011).
    [26] I. Prigogine, “Introduction to thermodynamics of irreversible processes,” 3rd ed., Interscience Publishers, a Division of John Wiley, New York (1967).
    [27] A. Iga, S. Nishiwaki, K. Izui, and M. Yoshimura,”Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection,” International Journal of Heat and Mass Transfer 52 (2009), pp. 2721-2732.
    [28] B.A. Meir, “Heat-conduction theory for composite materials,” Journal of Applied Mathematics and Physics 27 (1976), pp.335345.
    [29] W.M. Suen, S.P. Wong, K. Young, “The lattice model of heat conduction in a composite material,” Journal of Physics D: Applied Physics 12 (1979), pp.13251338.
    [30] C. Aviles-Ramos, J.V. Beck, A. Haji-Sheikh, “Exact solution of heat conduction in composite materials and application to inverse problems,” Journal of Heat Transfer-transactions of The Asme 120 (1998), pp.592599.
    [31] F.K. Hebeker, “A domain splitting method for heat conduction problems in composite materials,” Mathematical Modelling and Analysis 34 (2000), pp.4762.
    [32] G.M. Kulikov, S.V. Plotnikova, “Heat conduction analysis of laminated shells by a sampling surfaces method,” Mechanics Research Communications 55 (2014), pp.5965.
    [33] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, and T. Mantyla, “Modeling of thermal conductivity of porous materials: application to thick thermal barrier coating,” Journal of the European Ceramic Society 24 (2004), pp.2657-2667.
    [34] D.K. Robert and A. Lakhtakia, “Bruggeman model for chiral particulate composites,“ Journal of Physics D: Applied Physics 25 (1992), pp.1390-1394.
    [35] Zh. Wang, E. Skybakmoen and T. Grande, “Thermal conductivity of porous Si3N4-Bonded SiC sidewall materials in aluminum electrolysis cells,” Journal of the American Ceramic Society 95 (2012), pp.730-738.
    [36] S. Moaveni, “Finite element analysis-theory and application with ANSYS,” Prentice-Hall, 1999.
    [37] J.F. Thompson, Z.U.A. Warsi, C. Wayne Mastin, “Numerical grid generation: foundations and applications,” North-Holland, New York, 1985.
    [38] F.P. Incropera, D.P. DeWitt, “Fundamentals of heat and mass Transfer,” John Wiley & Sons, 2002.
    [39] Statistics published by London Metal Exchange website (http://www.lme.com/) on December 27, 2013.

    下載圖示 校內:2017-08-01公開
    校外:2017-08-01公開
    QR CODE