| 研究生: |
呂易安 Lu, Yi-An |
|---|---|
| 論文名稱: |
以基於協合應力偶理論之Hermite-Family C1與C2有限層狀元素法進行功能性壓電材料微米板之三維撓曲和自由振動分析 A Hermite-Family C1 and C2 Finite Layer Method for the Three-Dimensional Static Bending and Free Vibration Analyses of Functionally Graded Piezoelectric Microplates Based on the Consistent Couple Stress Theory |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 協合應力偶理論 、有限層狀元素法 、壓電微米板 、三維分析 、變形 、振動 、Hermite多項式 |
| 外文關鍵詞: | Consistent couple stress theory, finite layer methods, piezoelectric microplates, three-dimensional analysis, deformation, vibration, Hermite polynomials |
| 相關次數: | 點閱:80 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於協合應力偶理論(consistent couple stress theory, CCST),本文發展Hermite-Family C1與C2有限層狀元素法(finite layer methods, FLMs),並針對在開放或封閉迴路(open-/closed-circuit)表面條件下具簡支承邊界之功能性(functionally graded, FG)壓電材料微米板進行三維撓曲和自由振動分析。在撓曲分析中,假設微米板置放在Winkler-Pasternak彈性基礎上並施加正弦形式或均勻分布之電彈(electro-mechanical)荷載。文中之FLMs是將微米板切割為多個層狀元素,每層中彈性場及電場的主變數以傅立葉函數及Hermite多項式分別對內、外表面進行內插擬合。本文透過將材料尺度參數假設為零以及忽略壓電與撓電效應,分別使原FG壓電材料微米板之理論表述簡化為適用於FG壓電材料宏觀板及 FG彈性材料微米板之理論表述,並藉由與文獻中FG壓電材料宏觀板及FG彈性材料微米板之參數解進行比較,以此評估Hermite-Family C1與C2 FLMs之精確度及收斂情形。結果顯示使用Hermite-Family C1與C2 FLMs能更快收斂且收斂解與文獻之精確解高度契合。文中亦探討關於FG壓電材料微米板之撓曲變形和自由振動特性的影響因素,其中包含材料尺度參數、板之寬厚比、壓電效應、撓電效應、材料特性梯度指數、基礎介質的剪切模數及不同表面條件等參數。
Based on the consistent couple stress theory (CCST), the authors develop Hermite-family C1 and C2 finite layer methods (FLMs) for the three-dimensional (3D) static bending and free vibration analyses of a simply-supported, functionally graded (FG) piezoelectric microplate which is placed under open-circuit and closed-circuit surface conditions. In the bending analysis, the microplate of interest is assumed to be resting on a Winkler-Pasternak foundation and to be subjected to either sinusoidal or uniformly distributed electro-mechanical loads. In the formulation of the FLMs, the microplate is artificially divided into a number of finite microlayers, and Fourier functions and Hermite polynomials are used to interpolate the in-plane and out-of-plane variations of a number of primary variables, respectively, including elastic displacement components and the electric potential variable for each individual layer. The FLMs for analyzing EG piezoelectric microplates are reduced to the FLMs for analyzing FG piezoelectric macroplates and FG elastic microplates by setting the material length scale parameter at zero and by ignoring the piezoelectric and flexoelectric effects, respectively. The accuracy and convergence rate of the FLMs are assessed by comparing the solutions it produces with the exact and approximate 3D solutions of FG piezoelectric macroplates and FG elastic microplates which have been reported in the literature. The authors examine and discuss some key effects on the bending and free vibration characteristics of an FG piezoelectric microplate, including the impact of the material length scale parameter, the length-to-thickness ratio, the piezoelectric effect, the flexoelectric effect, the material-property gradient index, and the different surface conditions.
[1] E. Pan, P.R. Heyliger. Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. 68 (2003) 608-618.
[2] T.R. Tauchert. Piezothermoelastic behavior of a laminated plate. J. Therm. Stresses 15 (1992) 25-37.
[3] H.F. Tiersten. Linear Piezoelectric Plate Vibrations. Plenum Press, New York, 1969.
[4] P.R. Heyliger. Static behavior of laminated elastic/piezoelectric plates. AIAA J. 32 (1994) 2481-2484.
[5] C.P. Wu, K.H. Chiu, Y.M. Wang. A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. CMC-Comput. Mater. Continua 8 (2008) 93-132.
[6] C.P. Wu, Y.C. Liu. A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells. Compos. Struct. 147 (2016) 1-15.
[7] S. Brischetto, E. Carrera. Refined 2D models for the analysis of functionally graded piezoelectric plates. J. Intell. Mater. Syst. Struct. 20 (2009) 1783-1797.
[8] S. Brischetto, E. Carrera. Coupled thermo-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers. J. Therm. Stresses 35 (2012) 766-804.
[9] D.K. Jha, T. Kant, R.K. Singh. A critical review of recent research on functionally graded plates. Compos. Struct. 96 (2013) 833-849.
[10] A.M. Zenkour, Z.S. Hafed. Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory. Adv. Aircraft Spacecraft Sci. (2020) 115-134.
[11] A. Witvrouw, A. Mehta. The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 492-493 (2005) 255-260.
[12] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51 (2003) 1477-1508.
[13] S. Kong. A review on the size-dependent models of micro-beam and micro-plate based on the modified couple stress theory. Arch. Comput. Meth. Eng. 29, (2022) 1-31.
[14] W.T. Koiter. Couple stresses in the theory of elasticity, I and II. Phil Tran Royal Soc London B 67 (1964) 17-44.
[15] R.A. Toupin. Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 11 (1962) 385-414.
[16] R.D. Mindlin, H.F. Tiersten. Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11 (1962) 415-448.
[17] A.C. Eringen. Theory of micropolar elasticity. In: Fracture. Academic Press, New York, 1968.
[18] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong. Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39 (2002) 2731-2743.
[19] A.R. Hadjesfandiari, G.F. Dargush. Couple stress theory for solids. J. Solids Struct. 48 (2011) 2496-2510.
[20] A.R. Hadjesfandiari, G.F. Dargush. Fundamental solutions for isotropic size-dependent couple stress elasticity. Int. J. Solids Struct. 50 (2013) 1253-1265.
[21] S. Liu, T. Yu, T.Q. Bui. Size effects of functionally graded moderately thick microplates: A novel non-classical simple-FSDT isogeometric analysis. Eur. J. Mech. A/Solids 66 (2017) 446-458.
[22] W.Y. Jung, W.T. Park, S.C. Han. Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory. Int. J. Mech. Sci. 87 (2014) 150-162.
[23] H.T. Thai, S.E. Kim. A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos. Part B 45 (2013) 1636-1645.
[24] L.C. Trinh, T.P. Vo, H.T. Thai, J.L. Mantari. Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads. Compos. Part B 124 (2017) 218-241.
[25] C.H. Thai, A.J.M. Ferreira, J. Lee, H. Nguyen-Xuan. An efficient size-dependent computational approach for functionally graded isotropic and sandwich microplates based on modified couple stress theory and moving Kriging-based meshfree method. Int. J. Mech. Sci. 142-143 (2018) 322-338.
[26] T.D. Tran, C.H. Thai, H. Nguyen-Xuan. A size-dependent functionally graded higher order plate analysis based on modified couple stress theory and moving Kriging meshfree method. CMC-Comput. Mater. Continua 57 (2018) 447-483.
[27] Y.S. Li, E. Pan. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. Int. J. Eng. Sci. 97 (2015) 40-59.
[28] N.V. Nguyen, J. Lee. On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates. Int. J. Mech. Sci. 197 (2021) 106310.
[29] M.A. Abazid, M. Sobhy. Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory. Microsyst. Technol. 24 (2018) 1227-1245.
[30] M.Z. Nejad, A. Hadi, A. Farajpour. Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials. Struct. Eng. Mech. 63 (2017) 161-169.
[31] S.E. Alavi, M. Sadighi, M.D. Pazhooh, J.F. Ganghoffer. Development of size-dependent consistent couple stress theory of Timoshenko beams. Appl. Math. Modell. 79 (2020) 685-712.
[32] C. P. Wu and H. X. Hu, A unified size-dependent plate theory for static bending and free vibration analyses of micro- and nano-scale plates based on the consistent couple stress theory, Mech. Mater. 162 (2021) 104085.
[33] A.R. Hadjesfandiari. Size-dependent piezoelectricity. J. Solids Struct. 50 (2013) 2781-2791.
[34] C.P. Wu, C.H. Hsu. A three-dimensional weak formulation for stress, deformation, and free vibration analyses of functionally graded microscale plates based on the consistent couple stress theory. Compos. Struct. 296 (2022) 115829.
[35] Z. Zhong and T. Yu, Vibration of a simply supported functionally graded piezoelectric rectangular plate, Smart Mater. Struct. 15 (2016) 1404-1412.
[36] H. T. Thai and D. H. Choi, Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95 (2013) 142-153.
[37] J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (CRC Press, New York, NY, 2003).
[38] J. N. Reddy and J. Kim, A nonlinear modified couple stress-based third-order theory of functionally graded plates, Compos. Struct. 94 (2012) 1128-1143.
[39] W. Ma and L. E. Cross, Strain-gradient-induced electric polarization in lead zirconate titanate ceramics, Appl. Phys. Lett. 82 (2003) 3293-3295.
[40] W. Ma and L. E. Cross, Flexoelectricity of barium titanate, Appl. Phys. Lett. 88 (2006) 232902.
[41] H. Salehipour, H. Nahvi and A. R. Shahidi, Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories, Compos. Struct. 124 (2015) 283-291.
[42] P. Lu, H.P. Lee, C. Lu. Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism. Compos. Struct. 72 (2006) 352-363.
[43] G.M. Kulikov, S.V. Plotnikova. A new approach to three-dimensional exact solutions for functionally graded piezoelectric laminated plates. Compos. Struct. 106 (2013) 33-46.
[44] Z. Zhong, E.T. Shang. Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. Int. J. Solids Struct. 40 (2003) 5335–5352.
[45] H.X. Nguyen, T.N. Nguyen, M. Abdel-Wahab, S.P.A. Bordas, H. Nguyen-Xuan, T.P. Vo. A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput. Meth. Appl. Mech. Eng. 313 (2017) 904-940.
[46] S.S. Vel, R. Mewer, R.C. Batra. Analytical solution for the cylindrical bending vibration of piezoelectric composite plates. Int. J. Solids Struct. 41 (2004) 1625–1643.
[47] Q. Wang, S.T. Quek, C.T. Sun, X. Liu. Analysis of piezoelectric coupled circular plate. Smart Mater. Struct. 10 (2001) 229-239.
[48] H. Razavi, A.F. Babadi, Y.T. Beni. Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Compos Struct 160 (2017) 1299-1309.
[49] M. Malikan. Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order deformation theory. Appl. Math. Modell. 48 (2017)196-207.