| 研究生: |
黃國信 Huang, Kuo-Hsin |
|---|---|
| 論文名稱: |
利用蜜蜂最佳化演算法建立合作學習自動分組機制 An Group Composition Scheme for Collaborative Learning Using Artificial Bee Colony Optimization |
| 指導教授: |
黃悅民
Huang, Yueh-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 合作學習 、分組方法 |
| 外文關鍵詞: | Facebook, Artificial Bee Colony, Collaborative Learning, Grouping |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著社群網站的興起,人際關係提升到另一種層面互動方式,也在人與人之間形成了一種新型態的虛擬社群。Facebook是當今社會中最受到歡迎的社群網站之一,提供了多類型的互動平台、動態即時訊息與個人檔案的分享,成功地打入全球網路市場中。近年來,社群網站也被廣泛地應用在多種數位學習與合作學習的情境中,透過電腦網路及多媒體技術的快速發展與普及間接提升了數位學習的便利性與可用性。在合作學習的環境中,必須考量到學習者的分組,而透過良好的分組,可以提升學習者的學習成效,但是要建構一個良好的分組機制,必須多面向來考量學習者學習特性與相關背景知識。本篇研究提出了在社群網站上發展一套具適應性的動態分組系統,在合作學習的環境下,以每位學習者的知識背景與專業領域為基礎自動完成分組,有別於傳統的隨機分組方法。此系統藉由自動記錄每位學習者在社群網站的使用行為,如訊息回覆內容,點選文章內容的偏好,或是對特定類型主題的瀏覽率等,再透過蜜蜂演算法的最佳化來形成分組條件,選出最適合完成任務的成員。經過實驗模擬結果發現,透過蜜蜂最佳化演算法的群聚智慧機制,提供了一個更高效率且更為準確的分組結果。
The building up of social networking site has promoted the relationships of interaction and organized virtual communities among people and its achievements have become a center of attraction. Recently Facebook has been applied widely in a variety of fields for education and the integration of social networking services (SNSs) and e-learning provide a novel and rich content platform for knowledge delivery and collaborative learning. But there are so many “friends” (learners) on the social network sites, and it will be difficult for teachers to divide the learners into small groups or select the appropriate people for specific tasks over social networking sites, it needs a better way to group the learners. The main purpose of the building a group composition system in a collaborative learning environment is to strengthen the effectiveness of learning. This study proposed an adaptive group composition scheme for collaborative learning on Social Network Sites using artificial bee colony (ABC) optimization and to provide the most adaptive collaborative learning group based on the individual knowledge background in college project designing course. The proposed system recollect the learners’ profile automatically through surfing behaviors, the preferred topic, and the posted messages; moreover, utilizing an Artificial Bee Colony algorithm to optimize the group composition. The experiment results indicated the proposed method promotes the accuracy of the group composition and achieve the better performance effectively in comparison with the other methods.
Abraham, A., Das, S., & Roy, S. (2008). Swarm intelligence algorithms for data clustering. Soft Computing for Knowledge Discovery and Data Mining, 279-313.
Alavi, M. (1994). Computer-Mediated Collaborative Learning: An Empirical Evaluation. System.
Bai, S.-M., & Chen, S.-M. (2008). Evaluating students’ learning achievement using fuzzy membership functions and fuzzy rules. Expert Systems with Applications, 34(1), 399-410.
Baker, M. (2009). Computer supported collaborative learning.
Bonabeau, E., & Theraulaz, G. (2000). Swarm smarts(behavior of social insects as model for complex systems). Scientific American, 282(3), 72-74.
Bosch, T. E. (2009). Using online social networking for teaching and learning: Facebook use at the University of Cape Town. Communication, 35(2), 185-200.
Boyd, d. m., & Ellison, N. B. (2008). Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication, 13(1), 210-230.
Buckman, R. (2005). Too much information? Colleges Fear Student Postings On Popular 'Facebook' Site. The Wall Street Journal, 2.
Chen, A., Yang, G., & Wu, Z. (2006). Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. Journal of Zhejiang University-Science A, 7(4), 607-614.
Cheng, S.-C., Lin, Y.-T., & Huang, Y.-M. (2009). Dynamic question generation system for web-based testing using particle swarm optimization. Expert Systems with Applications, 36(1), 616-624.
Chong, C. S., Sivakumar, A. I., Low, M. Y. H., & Gay, K. L. (2006). A bee colony optimization algorithm to job shop scheduling. Paper presented at the Proceedings of the 2006 Winter Simulation Conference.
Chou, S. W., & Liu, C. H. (2005). Learning effectiveness in a Web based virtual learning environment: a learner control perspective. Journal of Computer Assisted Learning, 21(1), 65-76.
Cox, M. D., & Myerscough, M. R. (2003). A flexible model of foraging by a honey bee colony: the effects of individual behaviour on foraging success. Journal of Theoretical Biology, 223(2), 179-197.
Dorigo, M., & Birattari, M. (2007). Swarm intelligence. Scholarpedia, 2(9), 1462.
Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. Computational Intelligence Magazine, IEEE, 1(4), 28-39.
Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook friends:¨ Social capital and college students, use of online social network sites. Journal of Computer Mediated Communication, 12(4), 1143-1168.
Facebook. (2010). Statistics of Facebook. Retrieved June 13, 2011, from http://www.facebook.com/press/info.php?statistics
Hallam, S., Rogers, L., & Ireson, J. (2008). Ability grouping in the secondary school: attitudes of teachers of practically based subjects. International Journal of Research & Method in Education, 31(2), 181-192.
Huang, T.-C., Huang, Y.-M., & Cheng, S.-C. (2008). Automatic and interactive e-Learning auxiliary material generation utilizing particle swarm optimization. Expert Systems with Applications, 35(4), 2113-2122.
Huang, Y.-M., Chen, J.-N., Huang, T.-C., Jeng, Y.-L., & Kuo, Y.-H. (2008). Standardized course generation process using Dynamic Fuzzy Petri Nets. Expert Systems with Applications, 34(1), 72-86.
Huang, Y.-M., Chen, J.-N., Kuo, Y.-H., & Jeng, Y.-L. (2008). An intelligent human-expert forum system based on fuzzy information retrieval technique. Expert Systems with Applications, 34(1), 446-458.
Huang, Y.-M., Lin, Y.-T., & Cheng, S.-C. (2009). An adaptive testing system for supporting versatile educational assessment. Computers & Education, 52(1), 53-67.
Huang, Y. M., Huang, T. C., & Hsieh, M. Y. (2008). Using annotation services in a ubiquitous Jigsaw cooperative learning environment. Educational Technology & Society, 11(2), 3-15.
Huang, Y. M., Jeng, Y. L., & Huang, T. C. (2009). An educational mobile blogging system for supporting collaborative learning. Educational Technology & Society, 12(2), 163-175.
Huang, Y. M., Lin, Y. T., & Cheng, S. C. (2010). Effectiveness of a Mobile Plant Learning System in a science curriculum in Taiwanese elementary education. Computers & Education, 54(1), 47-58.
Huang, Y. M., & Liu, C. H. (2009). Applying adaptive swarm intelligence technology with structuration in web-based collaborative learning. Computers & Education, 52(4), 789-799.
Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1), 299-308.
Jarvela, S., Volet, S., & Jarvenoja, H. (2010). Research on Motivation in Collaborative Learning: Moving Beyond the Cognitive-Situative Divide and Combining Individual and Social Processes. Educational Psychologist, 45(1), 15-27.
Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory into practice, 38(2), 67-73.
Johnson, D. W., Johnson, R. T., & Smith, K. A. (1991). Active learning: Cooperation in the college classroom.
Kapur, M., Voiklis, J., & Kinzer, C. K. (2008). Sensitivities to early exchange in synchronous computer-supported collaborative learning (CSCL) groups. Computers & Education, 51(1), 54-66.
Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Techn. Rep. TR06, Erciyes Univ. Press, Erciyes.
Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214(1), 108-132.
Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. of Global Optimization, 39(3), 459-471.
Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687-697.
Karaboga, N. (2009). A new design method based on artificial bee colony algorithm for digital IIR filters. Journal of the Franklin Institute, 346(4), 328-348.
Kennedy, J., & Eberhart, R. (1995, Nov/Dec 1995 ). Particle swarm optimization. Paper presented at the Neural Networks, 1995. Proceedings., IEEE International Conference on Perth, WA , Australia
Lampe, C., Ellison, N., & Steinfield, C. (2006). A facebook in the crowd: social searching vs. social browsing. Paper presented at the CSCW '06: Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work, Banff, Alberta, Canada.
Leask, J., Hawe, P., & Chapman, S. (2001). Focus group composition: a comparison between natural and constructed groups. Australian and New Zealand journal of public health, 25(2), 152-154.
Lin, Y.-T., Huang, Y.-M., & Cheng, S.-C. (2010). An automatic group composition system for composing collaborative learning groups using enhanced particle swarm optimization. Computers & Education, 55(4), 1483-1493.
Liu, C. H., Chiang, T. C., & Huang, Y. M. (2007). Assessment of effectiveness of web-based training on demand. Interactive Learning Environments, 15(3), 217-235.
Millonas, M. M. (1992). Swarms, phase transitions, and collective intelligence.
Munoz, C., & Towner, T. (2009, March 2, 2009). Opening Facebook: How to use Facebook in the college classroom. Paper presented at the Proceedings of Society for Information Technology & Teacher Education International Conference 2009, Charleston, SC, USA.
Pham, D. T., Castellani, M., & Fahmy, A. A. (2008, 13-16 July 2008). Learning the inverse kinematics of a robot manipulator using the Bees Algorithm. Paper presented at the Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference.
Rau, P.-L. P., Gao, Q., & Ding, Y. (2008). Relationship between the level of intimacy and lurking in online social network services. Computers in Human Behavior, 24(6), 2757-2770.
Sha, D., & Hsu, C. Y. (2006). A hybrid particle swarm optimization for job shop scheduling problem. Computers & Industrial Engineering, 51(4), 791-808.
Solimeno, A., Mebane, M. E., Tomai, M., & Francescato, D. (2008). The influence of students and teachers characteristics on the efficacy of face-to-face and computer supported collaborative learning. Computers & Education, 51(1), 109-128.
Tach, L. M., & Farkas, G. (2006). Learning-related behaviors, cognitive skills, and ability grouping when schooling begins. Social Science Research, 35(4), 1048-1079.
Teodorovic , D., & Dell Orco, M. (2005). Bee colony optimization: a cooperative learning approach to complex transportation problems. Advanced OR and AI Methods in Transportation, 51-60.
Tillett, J., Rao, R., & Sahin, F. (2002). Cluster-head identification in ad hoc sensor networks using particle swarm optimization. Paper presented at the Personal Wireless Communications, 2002 IEEE International Conference on.
Wang, Huang, Jeng, & Wang. (2008). A blog-based dynamic learning map. Computers & Education, 51(1), 262-278.
Wang, K. T., Huang, Y. M., Jeng, Y. L., & Wang, T. I. (2008). A blog-based dynamic learning map. Computers & Education, 51(1), 262-278.
Wang, S., & Lin, S. (2007). The effects of group composition of self-efficacy and collective efficacy on computer-supported collaborative learning. Computers in Human Behavior, 23(5), 2256-2268.
Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71-95.
Wu, T. T., Sung, T. W., Huang, Y. M., & Yang, C. S. (2010). Location Awareness Mobile Situated English Reading Learning System. Journal of Internet Technology, 11(7), 923-933.
Zhang, D., Zhao, J. L., Zhou, L., & Nunamaker, J. F. (2004). Can e-learning replace classroom learning? Communications of the ACM, 47(5), 75-79.
Zurita, G., & Nussbaum, M. (2008). Dynamic Grouping in Collaborative Learning Supported by Wireless. Educational Technology & Society.