| 研究生: |
郭世強 Kuo, Shih-Chiang |
|---|---|
| 論文名稱: |
廚餘厭氧醱酵產氫程序之功能評估 Performance Evaluation for Anaerobic Hydrogen Fermentation Process Treating Kitchen Waste |
| 指導教授: |
鄭幸雄
Cheng, Sheng-Shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 尾端修飾限制片段長度多形性 、廚餘 、厭氧氫醱酵 、酸化菌 |
| 外文關鍵詞: | Anaerobic hydrogen fermentation, T-RFLP, Kitchen waste, Acidogenesis |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
為了評估酸化槽污泥利用廚餘的產氫能力,不同量的廚餘添加至六組不同初始食微比(S0/X0)的血清瓶裡,結果發現初始食微比越高,氫氣產生速率越高,最大氫氣產量也越高,在初始食微比為10.8 g COD/g VSS,可達到比產氫速率為6.25 mL/g VSS-hr。利用掃描式電子顯微鏡觀察酸化槽厭氧污泥之型態,優勢的菌相型態為類似Clostridium屬的長桿菌。利用Terminal Restriction Fragment Length (T-RFLP)分生的方法進行酸化槽微生物族群監測,分析出圖譜是以片段長度230 bps之Clostridium cluster I, cluster II,和250 bps之Clostridium cluster III之產氫菌群為主。利用交互因子實驗方法設計不同因子對於廚餘酸化槽污泥產氫能力的影響,發現利用垂直式的震盪培養及初始pH值調整為5.5對於最大產氫量有顯著的影響。
在本研究亦操作一3L反應槽,醱酵槽開始啟動在HRT 4天,有機負荷為 20 kg COD/m3/day,pH 值控制在5.5±0.1 範圍內,啟動期試程一加入玉米澱粉當作輔助基質,氫氣的產生速率為1 L H2/L/day,沒有甲烷的產生。試程二的操作,移除玉米澱粉輔助基質,改以全量進流廚餘基質,進流廚餘之有機負荷增加為20 kg COD/m3/day。試程二之平均氫氣產生速率為0.8 mL H2 /L/day,甲烷產生速率為16 mL CH4/L/day,產生之氣體以二氧化碳為主。為求得更佳之產氫效率,試程三改用高雄餐廳廚餘當作進料基質,氫氣的產生速率為0.7 L H2/L/day。試程4提高負荷,縮短水力停留時間至2天,氫氣的產生速率為1.5 L H2/L/day。以T-RFLP方法分析不同試程之菌群結構,發現反應槽試程2、3中皆以256bps之Clostridium Cluster Ⅲ及503bps之C. aldrichii, C. cellobioparum ,C. termitidis(Cluster Ⅲ),C. formicoaceticum(Cluster XI)的菌群為主。
ABSTRACT
The biomass was taken from a 3m3 acidogenesis bioreactor, for a batch study of the biochemical potential of hydrogen production. Six different food-microbial (S0/X0) ratios were conducted in batch biodegradation tests. In the first 30 hours, hydrogen was significantly produced with an initial food-microbial ratio as 10.8 g COD/g MLVSS. The maximum hydrogen production rate was 6.25 mL H2/ gVSS-hr. Observed with scanning electronic microscopy, long rod Clostridium-like group were predominant in the sludge. The molecular method, T-RFLP was applied to detect the acidogenesis microbial community. The T-RFLP result indicated that the potential hydrogen producing bacterium group existed in acidogenesis biological system. A 3-liter bench scale hydrogen CSTR with fill-and-draw operation fermentor was also established. In the first 20 days during the acclimation period, corn starch is added as the auxiliary substrate. The kitchen waste loading rate was 10 kg COD/m3/day, and corn starch loading rate was also 10 kg COD/m3/day. The hydrogen producing rate is 1 L H2/L/day. At run 2, the kitchen waste at the full loading, 20 kg COD/m3/day, was fed to the bioreactor. After a 20-day operation, the hydrogen producing rate is 0.8 mL /L/day. And the methane production is 16 mL CH4/L/day. The biogas consists mainly of carbon dioxide. Run 3 was fed with Kaohsiung kitchen waste, and it gives a hydrogen producing rate of 0.7 L H2/L/day. Run 4 that increase loading rate and decrease hydraulic retention time, was found the maximum hydrogen producing rate was1.5 L H2/L/day.
參考文獻
http://www.moeaec.gov.tw/02/01/energy/a1.htm 經濟部能源委員會,”能源白皮書”
http://www.rite.or.jp/English/E-home-frame.html RITE, Japan. “Overview”
http://www.enecho.meti.go.jp/english/ Agency for Natural Resources and Energy. ”The Energy and Resources Today”
http://www.eere.energy.gov/ U.S. Department of Energy, Efficiency and Renewable Energy Office. “Hydrogen, Fuel Cells & Infrastructure Technologies Program.”
http://www.kantei.go.jp/ Prime minister of Japan and his cabinet. “ Biotechnology Strategy Council”
http://www.iesvic.uvic.ca/ Integrated Energy Systems at the University of Victoria. “Energy System.”
http://www.h2.ca/en/PDF/ISO_TC_197_Hydrogen_technologies.pdf Draft Business Plan of ISO/TC 197 - Hydrogen technologies
http://www.afdc.doe.gov/ Alternative Fuels Data Center. “Alternative Fuels”
施翠盈 本土性梭菌屬產氫菌株之分離與生理特性研究,國立成功大學生物學研究所碩士論文(2002)。
郁揆民 紫色不含硫光合作用細菌產氫限制因子之研究,國立中興大學環境工程學研究所碩士論文(2003)。
張仕旻 利用薄膜反應器於高溫厭氧產氫生物程序之研究,成功大學環境工程學系碩士論文(2002)。
蕭嘉瑢 複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態之研究,成功大學環境工程學系碩士論文(2004)。
蕭景廷、李季眉、董昀昌 不同產氫光合作用細菌之最佳產氫條件研究,第25屆廢水處理研討會論文集 (2000)。
簡青紅 利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構,國立成功大學生物學研究所碩士論文(2003)。
王永福、鄭幸雄、曾怡禎、白明德、蕭嘉瑢 應用分子生物學方法研究分解複合基質之中溫產氫菌族群,第二十七屆廢水處理研討會論文集 (2002)。
張嘉修、范姜楷、林屏杰 以中空纖維微過濾膜結合CSTR反應器進行產氫醱酵,第二十七屆廢水處理研討會論文集(2002)。
黃俊霖、陳晉照、林秋裕、劉文佐 以分子生物技術進行厭氧生物產氫菌群結構之研究,第25屆廢水處理研討會論文集 (2000)。
鄭幸雄、白明德、趙禹杰 厭氧生物氫發酵程序應用於處理廢棄活性污泥的生物產氫與有機物降解特性研究,第二十七屆廢水處理技術研討會論文集 (2002)。
Adams M. W. W., and E. I. Stiefel. Biological hydrogen production: not so elementary. Science. 282: 1842-1843 (1998).
Adams, M. W. W., L. E. Mortenson, and J. S. Chen. Hydrogenase. Biochim. Biophys. Acta. 594: 105-176 (1980).
Andreesen J. R., H. Bahl, and G. Gottschalk. Introduction to the physiology and biochemistry of genus Clostridium. In: Clostridia, Minton N. P. and Clark J. D. (ed.) Plenum Press. New York. pp. 27-62 (1989).
Bahl, H. and P. Dürre. Biotechnology Vol. 1 Biological Fundamentals. pp. 286 – 323 (1993).
Bai, M. D., S. S. Cheng, and I. C. Tseng. Biohydrogen produced due to peptone degradation by pretreated seed sludge. 2001 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, Fukuoka, Japan.1, pp. 315-320 (2001).
Baronofsky J. J., W. J. A. Schreurs, and E. V. Kashket. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermaceticum. Appl. Environ. Microbiol. 48:1134-1139 (1984).
Brinkman, D., and D. Voss. “Egg-Shaped Digesters—Are they all they’re cracked up to be?” Proceedings of the 71th Annual Conference & Exposition, vol.2, Water Environment Federation, Alexandria, VA. (1998).
Brosseau, J. D., and J. E. Zajic. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal Chemical Technology and Biotechnology. 32: 496-502 (1982).
Bruce E. Rittmann, Perry L. McCarty “Environmental Biotechnology: Principle and Applications International Edition 2001,” McGraw-Hill, New York. (2001)
Canganella, F. and J. Wiegel. The potential of thermophilic clostridia in biotechnology. In: The Clostridia and Biotechnology, D. R. Woods, (eds.), Butterworth-Heinemann (1993).
Chang, F.Y. and Lin, C.Y Biohydrogenproduction using up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy 29(1). 33-39 (2003).
Chen, J. S. and L. E. Mortenson. Purification and properties of hydrogenase from Clostridium pasteuriamun W5. Biochim. Biophys. Acta. 371: 283-298 (1974).
Cheng, S. S., I. C. Tseng., and M. D. Bai. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, 1, Taipei, Taiwan. 759-764 (1999).
Dabrock, B., H. Bahl, and G. Gottschalk. Parameters affecting solvent production by Clostridium pasteuriamun. Appl. Environ. Microbiol. 58: 1233-1239 (1992).
Desvaux, M., E. Guedon, and H. Petitdemange. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66:2461-2470 (2000).
D.J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S .G. Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Slegrist, V. A. Vailin “Biochemical process,” “Anaerobic Digestion Model NO.1,” IWA publishing, UK, p.12 (2002).
Das, D., and T. N. Veziroglu Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26: 13-28 (2001).
Duangmanee, T., S. Padmasiri, J.J. Simmons, L. Raskin, S. Sung. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatment. WEFTEC 75th Annual Conference (2002).
Eaton, Andrew D., Clesceri, Lenore S., Greenberg, Arnold E., Franson, Mary Ann H. Standard methods for the examination of water and wastewate 20th ed. Washington, DC, American Public Health Association (1998).
Fabiano, B., and P. Perego. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 27: 149-156 (2002).
Fang, H. H. P. and H. Liu. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82: 87-93 (2002).
Fang, H. H. P., H. Liu, and T. Zhang. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78: 44-52 (2002).
Fang, H. H. P., T. Zhang, and H. Liu. Miccrobial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58: 112-118 (2002).
Frederick, M. A. Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology 4th ed. New York, Wiley (1999).
Fumiaki, T., J. D. Chang, N. Mizukami, S. T. Tatsuo, and H. Katsushige Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol. 39:726-730 (1993).
Girbal, L., and P. Soucaille. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176: 6433-6438 (1994).
Gottschalk, G. Bacterial Metabolism 2nd. Springer-Verlag New York Inc. p.276 (1985).
Guwy, A. J., F. R. Hawkes, D. L. Hawkes, and A. G. Rozzi Hydrogen production in a high rate fluidized bed anaerobic digester. Wat. Res., 21(6), 1291-1298 (1997).
Han, S. K., and Shin H. S. Performance of an innovative two-stage process converting food waste to hydrogen and methane, J Air & Waste Manage Assoc.,54(2),242-249 (2004).
Herbert, D., P. J. Philipps., and R. E. Strange. Carbohydrate analysis. Methods Enzymol. 5B: 265-277 (1971).
Heyndrickx, M., De Vos, P., De Ley, J. Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol. J. Appl. Bacteriol. 70:3233-3241 (1991).
Hippe, H., J. R. Andreesen, and G. Gottschalk The genera Clostridium, pp:1800-1978. In: Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (eds.), The prokaryotes. Vol II. Springer-Verlag, New York (1991).
J.H. Reith, R.H. Wijffels and H. Barten “Bio-Methane and Bio-Hydrogen” Dutch Biological Hydrogen Foundation on behalf of the contributing authors (2003).
John W. Peters Structure and mechanism of iron-only hydrogenase. Current opinion in Structural Biology. Vol. 9, 670-676 (1999).
Junelles, A. M., R. Janati-Idrissi, H. Petitdemange, and R. Gay Iron effect on acetone butanol fermentation. Curr. Microbiol. 17: 299-303 (1988).
Kalia, V. C., S. R. Jain, A. Kumar, and A. P. Joshi. Fermentationof bio-waste to H2 by Bacillus lichenoformis. World J. Microbiol. Biotechnol. 10:224-227 (1994).
Kataoka, N., A. Miya., and K. Kiriyama. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Proc. of the 8th International Conference on anaerobic digestion, 2, 383-390 (1997).
Kumar, N and D. Das. Production and purification of alpha-amylase from hydrogen -producing Enterobacter cloacae IIT-BT 08. Bioprocess Eng.;23,:pp.205-208 (2000).
Kuo-Shing Lee, Ji-Fang Wu, Yung-Sheng Lo, Yung-Chung Lo, Ping-Jei Lin, Jo-Shu Chang Anaerobic Hydrogen Production With an Efficient Carrier-Induced Granular Sludge Bed Bioreactor. Biotechnology and Bioengineering, Vol. 87, No. 5, (2004).
Lalman, J.A., D.M. Bagley Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Wat. Res., 35, 2975-2983 (2001).
Lay, J. J. Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol Bioeng. 68: 269-278 (2000).
Lay, J. J. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol and Bioeng ., 74(4):280-287 (2001).
Lay, J. J., Y. J. Lee, and T. Noike Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Wat. Res. 11: 2579-2586 (1999).
Lee, Y. J., T. Miyahara, and T. Noike. Effect of iron concentration on hydrogen fermentation. Bioresour Technol. 80: 227-231 (2001).
Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. Characteristion of microbial diversity by determining terminal restriction fragement length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63(11):4516-4522 (1997)
Lovitt, R. W., G. J. Shen, and J. G. Zeikus Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170: 2809-2815 (1988).
McCarty, P. L. Anaerobic Waste Treatment Fundamentals III. Public Works. 95: 91. (1964).
McInerney, M. J. Anaerobic hydrolysis and fermentation of fats and proteins. In: Biology of anaerobic microorganisms, Zehnder, A.J.B. (ed.), New York: Wiley. (1988).
Metcalf and Eddy Wastewater Engineering Treatment and Reuse 4th ed. McGraw Hill, New York. (2003)
Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65:4715-5724 (1999).
Miyake, J. Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York. (1998).
Mizuno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol. 73: 59-65 (2000).
Nochur, S. V., A. L. Demain, and M. F. Roberts Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth. Enzyme Microb. Technol. 14: 338-349 (1992).
Onodera, H., T. Miyahara, and T. Nokie Influence of ammonia concentration on hydrogen transformation of sucrose. Proc. of 7th IWQA. 1139-1144 (1999).
Owen, W. F., Stuckey, D. C., Herly, JR. J. B., Young, L.Y., McCarty, P. L., “Bioassay for monitoring biochemical methane potential and anaerobic toxicity”, Wat. Res. 13, 485-492 (1979).
Peguin, S. and P. Soucaille Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl. Environ. Microbiol. 61: 403-405 (1995).
Rachman, M. A., Y. Nakashimada, T. Kakizono, and N. Nishio Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl. Microbiol. Biotechnol. 49:450-454 (1998).
Sparling, R., D. Risbey, and H. M. Poggi-Varaldo Hydrogen production from inhibited anaerobic composters. Int. J. Hydrogen Energy, 36(6/7), 41-47 (1997).
Sung, S., and T. Liu Ammonia inhibition on thermophilic methanogens. Chemosphere 53 (1): 43 - 52 (2003).
Schoenheit, P., A. Brandis, and R. K. Thauer Ferredoxin degradation in growing Clostridium pasteuriamun during periods of iron deprivation. Arch. Microbiol. 120: 73-76 (1979).
Schwartz, R. D. and F. A. Keller Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH. Appl. Environ. Microbiol. 43: 1385-1392 (1982).
Taguchi, F., N. Mizukami, T. Saito-Takio, and K. Hasrgawa Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2. Canadian Journal of Microbiology. 41: 536-540 (1995).
Tanisho, S., and Y. Ishiwata Continuous hydrogen production from molasses by the bacterium Enterobacter aerogen. Int. J. Hydrogen Energy. 19: 807-812 (1994).
Tanisho, S., M. Kuromoto, and N. Kadokura. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23: 559-563 (1998).
Teh-Ming Liang, Sheng-Shung Cheng, Kun-Long Wu Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane” Int. J. of Hydrogen Energy, Vol. 27, pp.1157-1165 (2002).
Terracciano, J.S., W. J. A. Schreurs, and E. R. Kashket “Membrance H+ conductance of Clostridium thermoaceticum and Clostridium thermoaceticum.” Appl. Environ. Microbiol. 53, pp.782-786 (1987).
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562 (2001).
Ueno, Y., S. Otauka, and M. Morimoto Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering. 82: 194-197 (1996).
Wang,Y. F., S. S. Cheng, I C. Tseng, M. D. Bai, and C. J. Hsiao Comparison of Microbial Diversity of Hydrogen Fermentation Bioreactors Degrading Multiple Substrates (Glucose and Peptone). IWA Conference on ENVIRONMENTAL BIOTECHNOLOGY. (2003).
Wang, G. and D. I. C. Wang Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 47:294-298. (1984).
Yokoi, H., S. Mori, J. Hirose, S. Hayashi, and Y. Takasaki H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett. 20:895-899 (1998).
Zhang, T., H. Liu, and H. H. P. Fang Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management 69:149–156 (2003).
Zwietering, M. H., I. Jongenburger, F. M. Rombouts, and K. Van’t Riet Modeling of bacteria growth curve. Appl. Environ. Microbio. 56(6), pp.1875-1 (1990).