| 研究生: |
林佳穎 Lin, Jia-Ying |
|---|---|
| 論文名稱: |
巴夫藻褐藻素萃取及純化之策略優化 Optimizing fucoxanthin extraction and purification strategies from Pavlova sp. |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 巴夫藻 、褐藻素 、萃取 、兩相溶劑系統 、雙水相系統 、純化 、矽膠管柱層析 |
| 外文關鍵詞: | Pavlova sp., fucoxanthin, extraction, two-phase solvent system, aqueous two-phase system, purification, silica gel column chromatography |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
褐藻素是一種類胡蘿蔔素,存在於褐藻及巨藻中。研究顯示褐藻素在病症療效上具有潛力,例如在抗癌、抗糖尿病、抗肥胖和抗發炎的特性等,因此褐藻素作為高單價的生物產品,在保健食品的市場具有巨大的潛力。
本研究首先探討巴夫藻 (Pavlova sp.)的最適培養條件。利用不同光源強度培養,結果顯示當光源強度越強,藻體生長提升越多,但相反地,褐藻素含量會隨著光源強度增強而降低。綜合考量藻體生長及褐藻素的產能,發現最適合培養巴夫藻的光源強度是 75 μmol m-2 s-1。進一步探討不同接種量對於褐藻素含量的影響,結果顯示接種量對藻體生長沒有太大的影響,最後選擇0.2 g/L 作為後續實驗的接種量。在75 μmol m-2 s-1 光源強度的培養下,氮源(硝酸鈉)濃度為400 ppm時即足以供應藻體之生長,也發現即使在相同光源強度下,在缺氮的環境下,依然會造成褐藻素下降。為了探討若是在足夠的氮源的情況下,巴夫藻可以忍受多強的光源強度。結果顯示在足夠氮源下,可以接受高光源強度(300 μmol m-2 s-1),使藻體生長量提升至2.55 g/L,褐藻素含量可維持在19.28 mg/g。
接著探討各種會影響褐藻素的萃取效率的變因,包括破壁方法、溶劑和萃取時間。結果顯示在測試的各種破壁方法(超音波震盪、球磨和微波)中,超音波震盪是較為適合的破壁方法。以不同溶劑(如甲醇、乙醇、丙酮)萃取褐藻素時發現所測試的溶劑對褐藻素萃取效率的影響不大。基於溶劑的安全性問題,決定以乙醇作為後續實驗的萃取溶劑。在探討萃取時間的影響方面,結果顯示大部分褐藻素可在兩分鐘內萃取完成。為了節省溶劑含量,探討溶劑與藻粉的比例,結果顯示溶劑與藻粉的比例在25/1 (ml/g)是最適合萃取褐藻素的比例。
由於褐藻素粗萃物含有蛋白質和脂質等雜質。本研究利用反應曲面 (RSM) 實驗設計法尋求最佳去除脂質的兩相溶劑系統的組成。結果顯示最佳的組成為51.5%乙醇粗萃液與一半乙醇粗萃液體積的正己烷混合,可去除粗萃物中約52.8 %的脂質。接著也利用RSM尋找最佳雙水相系統的組成以去除蛋白質,本實驗雙水相系統是乙醇/硫酸銨,結果顯示最佳的雙水相組成是17 %(重量百分濃度)的硫酸銨和40 %(重量百分濃度)的乙醇,最後可去除粗萃物中約77 %的蛋白質。
本研究最後是進行褐藻素之純化,不同於之前雙溶劑萃取實驗時只觀察到分為兩相,在濃縮的粗萃物經過兩相溶劑系統處理時,除了分為兩相,還有橘紅色沉澱在管底部,且發現此橘紅色沉澱物含有褐藻素、蛋白質和其他色素,純度約為44.78 %。濃縮粗萃物也不適合利用雙水相系統進行褐藻素分離,因為在以雙水項系統去除蛋白質時,褐藻素會與蛋白質一起被移除,導致純度沒有上升反而下降。因此本研究利用管柱層析法進行褐藻素之純化,粗萃物經前處理後,利用矽膠填充管柱進行純化,洗脫液是正己烷與丙酮(體積比6:4)的混合液,結果顯示在最佳洗脫體積收集區間,其目標產物(褐藻素)純度可提升至68.86 %。將純化後的褐藻素樣品進行抗氧化活性測試,結果顯示當褐藻素濃度越高,抗氧化活性越高,清除50 %DPPH自由基清除活性的有效褐藻素濃度為184 ppm。
Brown microalgae and macroalgae are rich in fucoxanthin, a marine carotenoid. Previous studies showed that fucoxanthin has potential and promising applications to serve as health supplements with anticancer, antidiabetic, anti-obese, and anti-inflammatory abilities. Therefore, fucoxanthin has attracted much attention due to its numerous health benefits. Furthermore, fucoxanthin is a high-value bio-product and its huge market demand indicates its commercial opportunities.
The first part of this study explored the optimal cultivation conditions for the fucoxanthin-rich alga Pavlova sp. Using high light intensities indicated that biomass increased with increasing light intensity, while fucoxanthin content decreased. The optimal light intensity for fucoxanthin accumulation was 75 μmol m-2 s-1. The effect of different inoculum sizes (i.e. 0.1, 0.2 and 0.3 g/L) on fucoxanthin yield was investigated. The results showed that inoculum size did not significantly affect fucoxanthin content. The inoculum size of 0.2 g/L was chosen for further experiments. A 400 ppm of initial nitrate concentration was sufficient for 75 μmol m-2 s-1 light intensity. The results indicated that nitrogen depletion led to a decrease in fucoxanthin content. The tolerance of light intensity with abundant nitrogen sources was investigated. Pavlova sp. could tolerate up to 300 μmol m-2 s-1 of light intensity with 800 ppm nitrate, attaining a maximum biomass concentration and fucoxanthin content of 2.55 g/L and 19.28 mg/g, respectively.
In the second part of this study, several factors that affect fucoxanthin extraction efficiency from Pavlova sp. such as cell disruption method, choice of solvent, and extraction time were evaluated. Among the various cell disruption methods (ultrasonication, bead milling, and microwave), ultrasonication was chosen as the optimal technique for cell disruption. There was no remarkable difference in fucoxanthin yields between the tested solvents (methanol, ethanol, and acetone) for extraction. Therefore, ethanol was selected as the extraction solvent for the subsequent experiments as it is a solvent that is generally considered as safe (GRAS). As for extraction time, maximal fucoxanthin extraction occurred in two minutes. The ratio of 25/1 (solvent/dry biomass, ml/g) was suitable for fucoxanthin extraction.
The crude microalgal extract contained fucoxanthin, protein, and lipid. Thus, pretreatment steps for lipid and protein removal were chosen for further investigation. Response surface methodology (RSM) simulation of two variables, ethanol concentration and volume ratio of hexane to ethanol, was performed to optimize lipid removal from the crude microalgal extract. The result showed that the optimal composition of the two-phase solvent system was 51.5 v/v% ethanol extract solution mixed with n-hexane at a volume ratio of 2:1, which resulted in 52.8 % of lipid removed. Next, an ethanol/ammonium sulfate aqueous two-phase system (ATPS) was employed for protein removal. The optimized ATPS system of 17 w/w % ammonium sulfate concentration and 40 w/w% ethanol concentration attained 77 % protein removal.
In the third part of this study, the concentrated crude sample was pretreated with a two-phase solvent system. Fucoxanthin-rich orange-colored precipitation was obtained which contained fucoxanthin, protein, and other pigments. Its purity reached 44.78 %. ATPS was not applicable for concentrated extract, since over 50% of fucoxanthin is bound and segregated with proteins. Silica gel column chromatography with n-hexane/acetone (6:4 solution; v/v) as eluent was employed for the further purification of fucoxanthin. The results showed that the highest purity of 68.86 % was achieved. DPPH radical scavenging activity assay was performed to evaluate the antioxidant activity of purified fucoxanthin. The results showed that EC50 of purified fucoxanthin was 184 ppm and the scavenging activity increased with fucoxanthin concentration.
Abu-Ghosh, S., Dubinsky, Z., Verdelho, V., Iluz, D. 2021 Unconventionalhigh-value products from microalgae: A review. Bioresource Technology, 329, 124895.
Albertsson, P.-Å. 1970. Partition of cell particles and macromolecules in polymer two-phase systems. Advances in protein chemistry, 24, 309-341.
Alipanah, L., Rohloff, J., Winge, P., Bones, A.M., Brembu, T. 2015. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. Journal of Experimental Botany, 66(20), 6281-6296.
Allen, A.E., Ward, B.B., Song, B. 2005. characterization of diatom (bacillariophyceae) nitrate reductase genes and their detection in marine phytoplankton communities 1. Journal of Phycology, 41(1), 95-104.
Andersen, R.A. 2004. Biology and systematics of heterokont and haptophyte algae. American Journal of Botany, 91(10), 1508-1522.
Bertrand, M. 2010. Carotenoid biosynthesis in diatoms. Photosynthesis research, 106(1), 89-102.
Bojczuk, M., Żyżelewicz, D., Hodurek, P. 2017. Centrifugal partition chromatography – A review of recent applications and some classic references. Journal of separation science, 40(7), 1597-1609.
Bowler, C., Vardi, A., Allen, A.E. 2010. Oceanographic and biogeochemical insights from diatom genomes. Annu Rev Mar Sci, 2, 333-365.
Bradford, M.M. 1976. A dye binding assay for protein. Anal Biochem, 72(248), e54.
Brown, J.M., Attardi, L.D. 2005. The role of apoptosis in cancer development and treatment response. Nature reviews cancer, 5(3), 231-237.
Calvin, M. 1989. Forty years of photosynthesis and related activities. Photosynthesis research, 21(1), 3-16.
Cardol, P., Forti, G., Finazzi, G. 2011. Regulation of electron transport in microalgae. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(8), 912-918.
Carvalho, A.P., Silva, S.O., Baptista, J.M., Malcata, F.X. 2011. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Applied microbiology and biotechnology, 89(5), 1275-1288.
Chan, C.X., Blouin, N.A., Zhuang, Y., Zäuner, S., Prochnik, S.E., Lindquist, E., Lin, S., Benning, C., Lohr, M., Yarish, C. 2012. Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. Journal of Phycology, 48(6), 1328-1342.
Chen, C.-R., Lin, D.-M., Chang, C.-M.J., Chou, H.-N., Wu, J.-J. 2017. Supercritical carbon dioxide anti-solvent crystallization of fucoxanthin chromatographically purified from Hincksia mitchellae P.C. Silva. The Journal of Supercritical Fluids, 119, 1-8.
Chen, M. 2014.Chlorophyll Modifications and Their Spectral Extension in Oxygenic Photosynthesis. Annual review of biochemistry, 83(1), 317-340.
Choi, S.-K., Park, Y.-S., Choi, D.-K., Chang, H.I. 2008. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. Journal of microbiology and biotechnology, 18(12), 1990-1996.
Chuyen, H.V., Eun, J. B. 2017. Marine carotenoids: Bioactivities and potential benefits to human health. Critical reviews in food science and nutrition, 57(12), 2600-2610.
Claassens, N.J., Bordanaba-Florit, G., Cotton, C.A.R., De Maria, A., Finger-Bou, M., Friedeheim, L., Giner-Laguarda, N., Munar-Palmer, M., Newell, W., Scarinci, G., Verbunt, J., de Vries, S.T., Yilmaz, S., Bar-Even, A. 2020. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metabolic Engineering, 62, 30-41.
Coesel, S., Oborník, M., Varela, J., Falciatore, A., Bowler, C. 2008. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PloS one, 3(8), e2896.
Crupi, P., Toci, A.T., Mangini, S., Wrubl, F., Rodolfi, L., Tredici, M.R., Coletta, A., Antonacci, D. 2013. Determination of fucoxanthin isomers in microalgae (Isochrysis sp.) by high‐performance liquid chromatography coupled with diode‐array detector multistage mass spectrometry coupled with positive electrospray ionization. Rapid Communications in Mass Spectrometry, 27(9), 1027-1035.
Cunningham Jr, F.X., Lee, H., Gantt, E. 2007. Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryotic cell, 6(3), 533-545.
D’Orazio, N., Gemello, E., Gammone, M.A., De Girolamo, M., Ficoneri, C., Riccioni, G. 2012. Fucoxantin: A treasure from the sea. Marine drugs, 10(3), 604-616.
Dai, Y.-L., Jiang, Y.-F., Lu, Y.-A., Yu, J.-B., Kang, M.-C., Jeon, Y.-J. 2021. Fucoxanthin-rich fraction from Sargassum fusiformis alleviates particulate matter-induced inflammation in vitro and in vivo. Toxicology Reports, 8, 349-358.
Dambek, M., Eilers, U., Breitenbach, J., Steiger, S., Büchel, C., Sandmann, G. 2012. Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. Journal of experimental botany, 63(15), 5607-5612.
Duan, X.-J., Zhang, W.-W., Li, X.-M., Wang, B.-G. 2006. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95(1), 37-43.
Durrant, J.R., Klug, D.R., Kwa, S.L., Van Grondelle, R., Porter, G., Dekker, J.P. 1995. A multimer model for P680, the primary electron donor of photosystem II. Proceedings of the National Academy of Sciences, 92(11), 4798-4802.
Eilers, U., Bikoulis, A., Breitenbach, J., Büchel, C., Sandmann, G. 2016. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. Journal of applied phycology, 28(1), 123-129.
Evan, G.I., Vousden, K.H.J.n. 2001. Proliferation, cell cycle and apoptosis in cancer. nature, 411(6835), 342-348.
Foo, S.C., Yusoff, F.M., Ismail, M., Basri, M., Chan, K.W., Khong, N.M., Yau, S.K. 2015. Production of fucoxanthin-rich fraction (FxRF) from a diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Algal research, 12, 26-32.
Gao, F., Sá, M., Teles , I., Wijffels, R.H., Barbosa, M.J. 2021. Production and monitoring of biomass and fucoxanthin with brown microalgae under outdoor conditions. Biotechnology and Bioengineering, 118(3), 1355-1365
Gómez-Loredo, A., Benavides, J., Rito-Palomares, M. 2014. Partition behavior of fucoxanthin in ethanol-potassium phosphate two-phase systems. Journal of Chemical Technology & Biotechnology, 89(11), 1637-1645.
Gonçalves de Oliveira-Júnior, R., Grougnet, R., Bodet, P.-E., Bonnet, A., Nicolau, E., Jebali, A., Rumin, J., Picot, L. 2020. Updated pigment composition of Tisochrysis lutea and purification of fucoxanthin using centrifugal partition chromatography coupled to flash chromatography for the chemosensitization of melanoma cells. Algal Research, 51, 102035.
Gong, M., Bassi, A. 2016. Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34(8), 1396-1412.
Green, J. C. 1980. The fine structure of Pavlova pinguis Green and a preliminary survey of the order Pavlovales (Prymnesiophyceae). British Phycological Journal, 15(2), 151-191.
Grobbelaar, J.U. 2004. Algal nutrition: mineral nutrition. Handbook of microalgal culture: biotechnology and applied phycology, 97-115.
Guiry, M. D., & Guiry, G. M. 2010. AlgaeBase. World-wide electronic publication. http://www. algaebase. org.
Guo, B., Liu, B., Yang, B., Sun, P., Lu, X., Liu, J., Chen, F. 2016. Screening of Diatom Strains and Characterization of Cyclotella cryptica as A Potential Fucoxanthin Producer. Marine Drugs, 14(7), 125.
Guo, B., Yang, B., Pang, X., Chen, T., Chen, F., Cheng, K.-W. 2019. Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food & function, 10(9), 5644-5655.
Havlik, I., Scheper, T., Reardon, K.F. 2015. Monitoring of Microalgal Processes. Microalgae Biotechnology, 89-142.
Heo, S. J., Ko, S. C., Kang, S. M., Kang, H. S., Kim, J. P., Kim, S. H., Lee, K. W., Cho, M. G., Jeon, Y. 2008. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. European food research and technology, 228(1), 145-151.
Heo, S.-J., Yoon, W.-J., Kim, K.-N., Ahn, G.-N., Kang, S.-M., Kang, D.-H., affan, A., Oh, C., Jung, W.-K., Jeon, Y.-J. 2010. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology, 48(8), 2045-2051.
Hill, K.L., Hassett, R., Kosman, D., Merchant, S. 1996. Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant physiology, 112(2), 697-704.
Hosokawa, M., Kudo, M., Maeda, H., Kohno, H., Tanaka, T., Miyashita, K. 2004. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARγ ligand, troglitazone, on colon cancer cells. Biochimica et Biophysica Acta (BBA) General Subjects, 1675(1), 113-119.
Hosokawa, M., Wanezaki, S., Miyauchi, K., Kurihara, H., Kohno, H., Kawabata, J., Odashima, S., Takahashi, K. 1999. Apoptosis-inducing effect of fucoxanthin on human leukemia cell line HL-60. Food Science and Technology Research, 5(3), 243-246.
Hou, H.J., Mauzerall, D. 2011. Listening to PS II: Enthalpy, entropy, and volume changes. Journal of Photochemistry and Photobiology B: Biology, 104(1-2), 357-365.
Hwang, P.-A., Phan, N.N., Lu, W.-J., Hieu, B.T.N., Lin, Y.-C. 2016. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells. Food & Nutrition Research, 60(1), 32033.
Jang, E.J., Kim, S.C., Lee, J.-H., Lee, J.R., Kim, I.K., Baek, S.Y., Kim, Y.W. 2018. Fucoxanthin, the constituent of Laminaria japonica, triggers AMPK-mediated cytoprotection and autophagy in hepatocytes under oxidative stress. BMC complementary and alternative medicine, 18(1), 1-11.
Jiang, B., Li, Z.-G., Dai, J.-Y., Zhang, D.-J., Xiu, Z.-L. 2009. Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/phosphate system. Process Biochemistry, 44(1), 112-117.
Jin, Y., Qiu, S., Shao, N., Zheng, J. 2018. Fucoxanthin and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Synergistically Promotes Apoptosis of Human Cervical Cancer Cells by Targeting PI3K/Akt/NF-κB Signaling Pathway. Med Sci Monit, 24, 11-18.
Joel, J. 2016. Global fucoxanthin market 2016 industry trends, sales, supply, demand, analysis and forecast to 2021. Analysis and Forecast. New York.
Kakinuma, M., Shibahara, N., Ikeda, H., Maegawa, M., Amano, H. 2001. Thermal stress responses of a sterile mutant of Ulva pertusa (Chlorophyta). Fisheries science, 67(2), 287-294.
Kanazawa, K., Ozaki, Y., Hashimoto, T., Das, S.K., Matsushita, S., Hirano, M., Okada, T., Komoto, A., Mori, N., Nakatsuka, M. 2008. Commercial-scale preparation of biofunctional fucoxanthin from waste parts of brown sea algae Laminalia japonica. Food science and technology research, 14(6), 573-573.
Karpiński, T.M., Adamczak, A. 2019. Fucoxanthin—An Antibacterial Carotenoid. Antioxidants, 8(8), 239.
Kawee-Ai, A., Kim, A.T., Kim, S.M. 2019. Inhibitory activities of microalgal fucoxanthin against α-amylase, α-glucosidase, and glucose oxidase in 3T3-L1 cells linked to type 2 diabetes. Journal of Oceanology and Limnology, 37(3), 928-937.
Kawee-Ai, A., Kim, S.M. 2014. Application of microalgal fucoxanthin for the reduction of colon cancer risk: inhibitory activity of fucoxanthin against beta-glucuronidase and DLD-1 cancer cells. Natural product communications, 9(7), 921-924.
Kim, S.M., Jung, Y. J., Kwon, O. N., Cha, K.H., Um, B. H., Chung, D., Pan, C. H. 2012a. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Applied biochemistry and biotechnology, 166(7), 1843-1855.
Kim, S.M., Kang, S. W., Kwon, O. N., Chung, D., Pan, C. H. 2012b. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. Journal of the Korean Society for Applied Biological Chemistry, 55(4), 477-483.
Kim, S.M., Shang, Y.F., Um, B.H. 2011. A preparative method for isolation of fucoxanthin from Eisenia bicyclis by centrifugal partition chromatography. Phytochemical analysis, 22(4), 322-329.
Klomklao, S., Benjakul, S., Visessanguan, W., Simpson, B.K., Kishimura, H. 2005. Partitioning and recovery of proteinase from tuna spleen by aqueous two-phase systems. Process Biochemistry, 40(9), 3061-3067.
Koduvayur Habeebullah, S.F., Surendraraj, A., Jacobsen, C. 2018. Isolation of Fucoxanthin from Brown Algae and Its Antioxidant Activity: In Vitro and 5% Fish Oil-In-Water Emulsion. Journal of the American Oil Chemists' Society, 95(7), 835-843.
Kotake-Nara, E., Yonekura, L., Nagao, A. 2015. Lysoglyceroglycolipids improve the intestinal absorption of micellar fucoxanthin by Caco-2 cells. Journal of Oleo Science, 64(11), 1207-1211.
Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X., van Langenhove, H. 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology, 28(7), 371-380.
Kumar, S.R., Hosokawa, M., Miyashita, K. 2013. Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Marine drugs, 11(12), 5130-5147.
Lepage, G., Roy, C.C. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. Journal of Lipid research, 25(12), 1391-1396.
Li, Y., Sun, H., Wu, T., Fu, Y., He, Y., Mao, X., Chen, F. 2019. Storage carbon metabolism of Isochrysis zhangjiangensis under different light intensities and its application for co-production of fucoxanthin and stearidonic acid. Bioresource technology, 282, 94-102.
Lodish, H., Berk, A., Kaiser, C.A., Kaiser, C., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P. 2008. Molecular cell biology. Macmillan.
Ma, Y., Ye, X., Hao, Y., Xu, G., Xu, G., Liu, D. 2008. Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrasonics Sonochemistry, 15(3), 227-232.
Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., Miyashita, K. 2005. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochemical and Biophysical Research Communications, 332(2), 392-397.
Marchal, L., Legrand, J., Foucault, A. 2003. Centrifugal partition chromatography: A survey of its history, and our recent advances in the field. The Chemical Record, 3(3), 133-143.
Matsuno, T. 2001. Aquatic animal carotenoids. Fisheries science, 67(5), 771-783.
McClure, D.D., Luiz, A., Gerber, B., Barton, G.W., Kavanagh, J.M. 2018. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Research, 29, 41-48.
Mei, C., Zhou, S., Zhu, L., Ming, J., Zeng, F., Xu, R. 2017. Antitumor Effects of Laminaria Extract Fucoxanthin on Lung Cancer. Marine drugs, 15(2), 39.
Melis, A., Seibert, M., Happe, T.J.P.R. 2004. Genomics of green algal hydrogen research. Photosynthesis Research, 82(3), 277-288.
Mikami, K., Hosokawa, M. 2013. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds. International journal of molecular sciences, 14(7), 13763-13781.
Mishra, K., Ojha, H., Chaudhury, N.K. 2012. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 130(4), 1036-1043.
Mohamadnia, S., Tavakoli, O., Faramarzi, M.A., Shamsollahi, Z. 2020. Production of fucoxanthin by the microalga Tisochrysis lutea: A review of recent developments. Aquaculture, 516, 734637.
Moseley, J., Grossman, A.R. 2009. Chapter 6 - Phosphate Metabolism and Responses to Phosphorus Deficiency. In The Chlamydomonas Sourcebook (pp. 189-215). Academic Press.
Mullineaux, C.W. 2014. Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(4), 503-511.
Ördög, V., Stirk, W.A., Bálint, P., Aremu, A.O., Okem, A., Lovász, C., Molnár, Z., van Staden, J. 2016. Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains. Algal Research, 16, 141-149.
Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S.V.V., Ghosh, T., Dubey, S., Mishra, S. 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216-1226.
Pasquet, V., Chérouvrier, J.-R., Farhat, F., Thiéry, V., Piot, J.-M., Bérard, J.-B., Kaas, R., Serive, B., Patrice, T., Cadoret, J.-P., Picot, L. 2011a. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46(1), 59-67.
Pasquet, V., Chérouvrier, J. R., Farhat, F., Thiéry, V., Piot, J. M., Bérard, J. B., Kaas, R., Serive, B., Patrice, T., Cadoret, J. P. 2011b. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46(1), 59-67.
Peng, J., Yuan, J. P., Wu, C. F., Wang, J. H. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine drugs, 9(10), 1806-1828.
Petrushkina, M., Gusev, E., Sorokin, B., Zotko, N., Mamaeva, A., Filimonova, A., Kulikovskiy, M., Maltsev, Y., Yampolsky, I., Guglya, E., Vinokurov, V., Namsaraev, Z., Kuzmin, D. 2017. Fucoxanthin production by heterokont microalgae. Algal Research, 24, 387-393.
Phong, W.N., Show, P.L., Chow, Y.H., Ling, T.C. 2018. Recovery of biotechnological products using aqueous two phase systems. Journal of Bioscience and Bioengineering, 126(3), 273-281.
Polson, C., Sarkar, P., Incledon, B., Raguvaran, V., Grant, R. 2003. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 785(2), 263-275.
Procházková, G., Brányiková, I., Zachleder, V., Brányik, T. 2013. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. Journal of Applied Phycology, 26(3), 1359-1377.
Quigg, A. 2016. Micronutrients. in: The physiology of microalgae, Springer, pp. 211-231.
Quitain, A.T., Kai, T., Sasaki, M., Goto, M. 2013. Supercritical Carbon Dioxide Extraction of Fucoxanthin from Undaria pinnatifida. Journal of Agricultural and Food Chemistry, 61(24), 5792-5797.
Raines, C.A. 2003. The Calvin cycle revisited. Photosynthesis research, 75(1), 1-10.
Ras, M., Steyer, J.-P., Bernard, O. 2013. Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology, 12(2), 153-164.
Rasmussen, M., Minteer, S.D. 2014. Photobioelectrochemistry: solar energy conversion and biofuel production with photosynthetic catalysts. Journal of the Electrochemical Society, 161(10), H647.
Raven, J.A., Evans, M.C., Korb, R.E. 1999. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis research, 60(2), 111-150.
Richmond, A. 2008. Handbook of microalgal culture: biotechnology and applied phycology. John Wiley & Sons.
Sachindra, N.M., Sato, E., Maeda, H., Hosokawa, M., Niwano, Y., Kohno, M., Miyashita, K. 2007. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Journal of agricultural and food chemistry, 55(21), 8516-8522.
Sangeetha, R., Bhaskar, N., Baskaran, V. 2009. Comparative effects of β-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Molecular and cellular biochemistry, 331(1), 59-67.
Schubert, N., García‐Mendoza, E., Pacheco‐Ruiz, I. 2006. Carotenoid composition of marine red algae 1. Journal of Phycology, 42(6), 1208-1216.
Shannon, E., Abu-Ghannam, N. 2017. Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. Journal of Applied Phycology, 29(2), 1027-1036.
Sharma, P.P., Baskaran, V. 2021. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. Algal Research, 54, 102187.
Siahaan, E.A., Chun, B.S. 2020. Innovative Alternative Technology for Fucoxanthin Recovery. Encyclopedia of Marine Biotechnology, 3213-3227.
Spagolla Napoleão Tavares, R., Stuchi Maria-Engler, S., Colepicolo, P., Debonsi, H.M., Schäfer-Korting, M., Marx, U., Rigo Gaspar, L., Zoschke, C. 2020. Skin Irritation Testing beyond Tissue Viability: Fucoxanthin Effects on Inflammation, Homeostasis, and Metabolism. Pharmaceutics, 12(2), 136.
Sun, P., Wong, C.-C., Li, Y., He, Y., Mao, X., Wu, T., Ren, Y., Chen, F. 2019. A novel strategy for isolation and purification of fucoxanthinol and fucoxanthin from the diatom Nitzschia laevis. Food Chemistry, 277, 566-572.
Sun, X., Zhao, H., Liu, Z., Sun, X., Zhang, D., Wang, S., Xu, Y., Zhang, G., Wang, D. 2020. Modulation of Gut Microbiota by Fucoxanthin During Alleviation of Obesity in High-Fat Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 68(18), 5118-5128.
Sutherland, I.A. 2007. Recent progress on the industrial scale-up of counter-current chromatography. Journal of Chromatography A, 1151(1), 6-13.
Szabó, I., Bergantino, E., Giacometti, G.M. 2005. Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo‐oxidation. EMBO reports, 6(7), 629-634.
Takaichi, S. 2011. Carotenoids in Algae: Distributions, Biosyntheses and Functions. Marine drugs, 9(6), 1101-1118.
Terasaki, M., Hirose, A., Narayan, B., Baba, Y., Kawagoe, C., Yasui, H., Saga, N., Hosokawa, M., Miyashita, K. 2009. Evaluation of recoverable functional lipid components of several brown seaweeds (Phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents 1. Journal of phycology, 45(4), 974-980.
Toma, M., Vinatoru, M., Paniwnyk, L., Mason, T.J. 2001. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry, 8(2), 137-142.
Wang, J., Han, D., Sommerfeld, M.R., Lu, C., Hu, Q. 2013. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. Journal of Applied Phycology, 25(1), 253-260.
Wang, J., Ma, Y., Yang, J., Jin, L., Gao, Z., Xue, L., Hou, L., Sui, L., Liu, J., Zou, X. 2019. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. Journal of Cellular and Molecular Medicine, 23(3), 2219-2229.
Webber, A.N., Lubitz, W. 2001. P700: the primary electron donor of photosystem I. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1507(1-3), 61-79.
Xia, S., Gao, B., Fu, J., Xiong, J., Zhang, C. 2018. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. Journal of Bioscience and Bioengineering, 126(6), 723-729.
Xia, S., Wang, K., Wan, L., Li, A., Hu, Q., Zhang, C. 2013. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine drugs, 11(7), 2667-2681.
Xiao, X., Si, X., Yuan, Z., Xu, X., Li, G. 2012. Isolation of fucoxanthin from edible brown algae by microwave‐assisted extraction coupled with high‐speed countercurrent chromatography. Journal of separation science, 35(17), 2313-2317.
Xu, X., Gu, X., Wang, Z., Shatner, W., Wang, Z. 2019. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renewable and Sustainable Energy Reviews, 110, 65-82.
Yang, H., Xing, R., Liu, S., Yu, H., Li, P. 2021. Role of Fucoxanthin towards Cadmium-induced renal impairment with the antioxidant and anti-lipid peroxide activities. Bioengineered, 12(1), 7235-7247.
Ye, G., Wang, L., Yang, K., Wang, C. 2020. Fucoxanthin may inhibit cervical cancer cell proliferation via downregulation of HIST1H3D. Journal of International Medical Research, 48(10), 0300060520964011.
Yousefi, M.K., Hashtroudi, M.S., Moradi, A.M., Ghasempour, A.R. 2018. In vitro investigating of anticancer activity of focuxanthin from marine brown seaweed species. Global Journal of Environmental Science and Management, 4(1), 81-90.
Zaragozá, M., López, D., P. Sáiz, M., Poquet, M., Pérez, J., Puig-Parellada, P., Marmol, F., Simonetti, P., Gardana, C., Lerat, Y. 2008. Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. Journal of Agricultural and Food Chemistry, 56(17), 7773-7780.
Zhang, Z., Shrager, J., Jain, M., Chang, C.-W., Vallon, O., Grossman, A.R. 2004. Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryotic cell, 3(5), 1331-1348.
Zhao, B., Su, Y. 2014. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renewable and Sustainable Energy Reviews, 31, 121-132.
Zhao, X., Gao, L., Zhao, X. 2022. Rapid Purification of Fucoxanthin from Phaeodactylum tricornutum. Molecules, 27(10), 3189.
Zhu, J., Rong, J., Zong, B. 2013. Factors in mass cultivation of microalgae for biodiesel. Chinese Journal of Catalysis, 34(1), 80-100.
Zuccaro, G., Yousuf, A., Pollio, A., Steyer, J. P. 2020. Chapter 2 Microalgae Cultivation Systems. Microalgae Cultivation for Biofuels Production, 11-29.
校內:2027-09-14公開