| 研究生: |
楊益成 Yang, Yi-Cheng |
|---|---|
| 論文名稱: |
輻射快速加熱模具表面之實驗研究 Experimental Investigation on Rapid Heating of Radiation for Injection Mold Surface |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 鹵素燈 、表面快速加熱 、射出成型 、熱影像儀 |
| 外文關鍵詞: | thermal imager, halogen lamp, surface rapid heating, injection molding |
| 相關次數: | 點閱:139 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
塑膠材料廣泛的應用在微小化機構,但低成本的大量製造塑膠微特徵零件仍是一項挑戰。射出微特徵的成型過程遭遇了一些先天的問題,最主要的困難在於熔融的塑料在微小的模穴中因接觸冷模壁而快速冷凝,這問題當微特徵具高深寬比時更加惡化。
本研究發展一套組裝於射出成型模具上的紅外線快速加熱系統。此加熱系統使用四個具有1kW功率的鹵素燈做為加熱熱源。研究中探討平面與球面反射燈罩搭配並列或分散的燈泡組合對加熱效率的影響。加熱效率經由熱影像系統量測加以驗證。
實驗結果發現球面並列加熱20秒在各種的輻射加熱中可提昇模具溫度最高達188.3OC,假若在加熱期間關閉冷卻系統則溫度可達到208.25OC。考慮5秒後完成關模與射膠,球面並列加熱20秒的模具表面溫度分別是141.3 OC與159.65 OC。
本研究使用一組蝸線模具進行表面快速加熱的射出成型實驗,在實驗中使用PP,PMMA與PC三種塑膠材料。由於充填前模具表面溫度高於塑料玻璃轉換溫度,因此蝸線長度會比未加熱時長。由實驗結果得知,球面並列加熱20秒在蝸線模具有最佳的成形能力,塑料PP比不加熱增加46%流動長度,塑料PC增加27%,塑料PMMA增加52%。
The potential applications of plastics in miniaturized devices are numerous. The low-cost mass-production of plastic microfeatures is still a challenge. The injection molding process has some inherent problems on molding microfeatures. The main difficulty is that the molten polymer will solidify rapidly in the tiny cavity while contacting the relatively cold cavity wall. The problem gets worse when microfeatures with high aspect ratios are molded.
In this study an infrared rapid heating system was designed to assemble on the mold for injection molding. Four halogen lamps, 1kW power each, were used as the heating source in the heating system. Two kinds of reflector shades (flat and spherical) combined with concentrated or scattered lamp configuration for heating efficiency were explored.
As a result, we found the spherical shade with concentrated lamps could provide the highest temperature 188.3OC within varied radiation heating on mold after 20s. In case of the cooling system was closed in the period of heating, the temperature would get up to 208.25OC. Considering 5 seconds after heating, the mold surface temperature would be 141.3 OC. If the cooling system has been closed, the temperature would be 159.65 OC.
A spiral mold was used to test the moldability of injection molding by surface rapid heating. Three kinds of resins—PP, PMMA and PC were molded in the experiments. Due to the mold surface temperature before filling is higher than the glass transition temperature of resins. The moldability of resins will be improved. As a result, the best moldability on the spiral mold was heated 20s by the spherical shade with concentrated lamps. The increased flow length of plastic PP was 46% longer than without being heated. In addition, plastic PC has increased 27% and plastic PMMA has increased 52%.
﹝1﹞ 鍾享年,“微量射出成形製程設備技術”,工業技術研究院 機械工業研究所(2003.4).
﹝2﹞ 陳建人, “微機電系統技術與應用”, 行政院國家科學委員會精密儀器發展中心出版.
﹝3﹞ 李育云, “感應加熱應用於模具快速加熱之研究”, 碩士論文, 私立中原大學 (2002).
﹝4﹞ Dong-Hak Kim, Myung-Ho Kang and Y. H. Chun, “Development of a New Injection Molding Technology:Momentary Mold Surface Heating Process,” Journal of Injection Molding Technology, 5, No. 4, pp.229-232 (2001).
﹝5﹞ Donggang Yao and Byung Kim, “Development of Rapid Heating and Cooling Systems for Injection Molding Applications,” Polymer Engineering and Science, 42, No. 12 (2002).
﹝6﹞ S.C.Chen, H.S.Peng, J.A.Chang and W.R.Jong, “Simulations and Verifications of Induction Heating on a Mold Plate,” Int.Comm.Heat Mass Transfer, 31, No. 7, pp.971-980 (2004).
﹝7﹞ 莊達人, “VLSI製造技術”, 高立圖書有限公司.
﹝8﹞ Donggang Yao and Byung Kim, “Injection Molding High Aspect Ratio Microfeatures,” Journal of Injection Molding Technology, 6, No.1(2002)
﹝9﹞ M. S. Despa, K. W. Kelly and J. R. Collier, “Injection Molding of polymeric LIGA HARMS,” Microsystem Technologies, 6, pp.60-66 (1999).
﹝10﹞ V. Piotter, T. Hanemann, R. Ruprecht and J. Hauβelt, “Injection molding and related techniques for fabrication of microstructures,” Microsystem Technologies, pp.129-133 (1997).
﹝11﹞ V. Piotter, K. Mueller, K. Plewa, R. Ruprecht and J. Hausselt, “Performance and simulation of thermoplastic micro injection molding,” Microsystem Technologies, 8, pp.387-390 (2002).
﹝12﹞ Y. K. Shen, Y. J. Shie and W. Y. Wu, “Extension Method and Numerical Simulation of Micro-injection Molding,” Int.Comm.Heat Mass Transfer, 31, No. 6, pp.795-804 (2004).
﹝13﹞ 林志鴻, “微射出快速模溫控制系統與玻璃模仁表面微結構複製成型探討”, 碩士論文, 國立台灣大學 (2001).
﹝14﹞ Takushi Saito, Isao Satoh and Yasuo Kurosaki, “A New Concept of Active Temperature Control for an Injection Molding Process Using Infrared Radiation Heating,” Polymer Engineering and Science, 42, No. 12 (2002).
﹝15﹞ C. Bonten and C. Tuchert, “Welding of Plastics—Introduction into Heating by Radiation,” Journal of Reinforced Plastics and Composites, 21, No. 8 (2002).
﹝16﹞ 紀崇仁, “晶圓快速熱處理模擬”, 碩士論文, 國立成功大學 (2002).
﹝17﹞ Yaw-Kuen Jan and Ching-An Lin, “Lamp Configuration Design for Thermal Processing Systems,” IEEE Transactions on Semiconductor Manufacturing, 11, No. 1 (1998).
﹝18﹞ 葛紹岩 那鴻悅,“熱輻射性質及其測量”, 科學出版社, 中國 (1989).
﹝19﹞ 陳介聰, “射出模具設計基礎”, 復漢出版社, 台南市(2000).
﹝20﹞ 李進桂, “以紅外線影像方法作精神狀態評估--初步探討”, 碩士論文, 國立成功大學 (2004).
﹝21﹞ 游正晃,“塑膠機與塑膠模具”, 三民書局, 台北市 (1984).
﹝22﹞ 陳秋君, “含加熱系統模具之模擬與驗證”, 碩士論文, 私立中原大學 (2000).