| 研究生: |
蔡雙吉 Tsai, Shuang-Ji |
|---|---|
| 論文名稱: |
利用PE-CVD以改良式疊層(Improved Layer by Layer)
技術在玻璃基板上成長奈米矽鍺大面積高速紅外線光感測元件之研究 A Study of nc-SiGe High-Speed Photodiode Grown by PECVD with Improved Layer-by-Layer (ILBL) Technology |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 矽鍺 、疊層 |
| 外文關鍵詞: | nc-SiGe, improved layer by layer |
| 相關次數: | 點閱:67 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大面積紅外線光感測器元件須具有高操作速度、高光增益且低溫製程可製作大面積Array型式者。以往文獻報導,有以非晶矽/非晶矽鍺(Si1-xGex)材料製作不但可在玻璃基板上進行大面積成長,且光吸收特性佳,並可獲得較高的光增益。但由於非晶矽/矽鍺(Si1-xGex)材料之載子移動率(mobility)低,限制其操作速度而無法製作高速之紅外光感測元件。也有採用具有高移動率及導電性佳之複晶矽/矽鍺材料者,但其製程溫度又太高,只能在矽晶片基板上成長,無法製成大面積 array 式。至於低溫複晶矽雖可成長在大面積之玻璃上但製作時不易均勻,且具較高成本。本文使用改良式PECVD疊層技術,利用氬原子電漿處理技術來成長奈米矽鍺薄膜,藉由較重的Ar原子,能更快更有效率的打斷通入SiH4及GeH4的Si、Ge的鍵結,進而更有效結合成 nc-SiGe薄膜
本論文發展出成長奈米複晶矽鍺之最佳製程參數,可長出載子遷移率高達為99.1 cm2/v*s的nc-SiGe薄膜,且成長率較一般傳統疊層技術增加30%左右,並利用FeSEM、AFM觀察薄膜的表面, Hall measurement量測載子移動率作為電性分析依據,以及使用Raman spectra、FTIR等儀器分析薄膜的結晶品質,使用PL及Spectra Pro500來量測其吸收光譜及吸收係數,再用最佳成長I-type奈米複晶矽鍺參數及通入磷及硼來摻雜製作P-type和N-type奈米複晶矽鍺。最後以所得到之最佳參數在玻璃基板上製作PIN結構的奈米複晶矽鍺薄膜光二極體元件,並量測其I-V curve及響應速度,據此探討其使用於紅外光感測器之可行性及優缺點。
A large-area IR detector must have high operation speed, high photo-gain, and could be prepared in large-area array type. Materials, such as a-Si or a-SiGe grown on the glass substrates has high absorption coefficient, and high photo-gain. However, their mobility are too low to work in high speed. While the materials, poly Si or poly SiGe has high mobility and conductivity, but their processing temperatures are too high to grow on large-area glass substrate for forming a large- area array. Even the LTPS (Low Temperature Poly Silicon) can be deposited on large-area, but its uniformity is bad, and cost is high. In this work, we use improved layer-by-layer method (ILBL), which takes the advantage of argon plasma annealing to break the bonds within Si and Ge compound fast and effectively, thus enhances the growth rate.
In this thesis, firstly, we developed the nc-SiGe thin films with the ILBL technology to grow the higher mobility (about 99.1 cm2/v*s) nc-SiGe films. The growth rate is about 60nm/cycle, which is 30% larger than traditional layer by layer technology. Additionally, we optimized the best growing parameters to prepare PIN photodiodes and studied their performance for IR photodetecting application. We investigated physical, optical and electrical characteristics of the films by Fe-SEM, AFM, Hall measurement, Raman spectrum, Photoluminescence, Spectra Pro500 respectively. The IR detecting characteristics were examined by photo and dark current ratio, responsitivity, and response speed measurement.
[1]Jyh-Jier Ho, Y.K. Fang, K.H. Wu and S.C. Huang, M.S. Ju and Jing-Jenn Lin, “High-speed Amorphous Silicon Germanium Infrared Sensors Prepared on Crystalline Silicon Substrates”, IEEE Trans. on Electron Devices, Vol.45, No.9, pp.2085-2088, Sept. (1998).
[2]Jyh-Jier Ho, Y.K. Fang, K.H. Wu, and C.S. Tsai, “High-gain p-i-n infrared photosensors with Bragg reflectors on amorphous silicon alloy,” Appl. Phys. Lett.,.70 (7), pp.826-828, 17 Feb. (1997).
[3]C.Y. Chen, J.-J. Ho, Y.K. Fang and S.F. Chen, “Performance Analysis and Development of High-speed pin Infrared Sensors Prepared on Crystalline Silicon Substrates”, ICOSN 2001 (SPIE), pp305-310,June (2001).
[4]S. B. Hwang, Y. K. Fang, K. H. Chen, C. R. Liu, J. D. Hwang and M. H. Chou, “An a-Si:H/a-Si,Ge:H bulk barrier phototransistor with a-SiC:H barrier enhancement layer for high-gain IR optical detector”, IEEE Trans on Electron Devices, Vol 40, No 4, pp.721, (1993).
[5]Y. K. Fang, S. B. Hwang, K. H. Chen, C. R. Liu and L. C. Kuo, “A metal-amorphous silicon-germanium alloy schottky barrier for infrared optoelectronic IC on glass substrate application”, IEEE Trans on Electron Devices, Vol 39, No 6, pp.1350, (1992).
[6]T.Aoyama, G.Kawachi, N,Konishi, Y.Okajima and K.Miyata, “Crystallization of LPCVD Silicon Films by Low Temperature Annealing”, Journal of the Electrochem. Soc., vol136, no.4,pp.1169-1173, (1989).
[7]Seong-Min Choe, Jeong-Ah Ahn and Ohyum Kim, “ Fabraction of Laser-Annealed Poly-TFT by Forming a SixGe1-x Thermal Barrier”, IEEE Electron Device Letters, Vol.22, No.3, March (2001).
[8]P. Photopoulos, A.G. Nassiopoulou , D.N. Kouvatsos , A. Travlos,” Photo- and electroluminescence from nanocrystalline silicon single and multilayer structures”, Materials Science and Engineering B69–70 pp.345–349 (2000).
[9]T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura , S. Nitta, “Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids 266-269 pp.201-205 (2000).
[10]P. Roca i Cabarrocas, ”New approaches for the production of nano-, micro-,and polycrystalline silicon thin films”, phys. stat. sol. (c) 1, No. 5, 1115– 1130 (2004)
[11]A. Orpella , C. Voz , J. Puigdollers, D. Dosev , M. Fonrodona , D. Soler , J. Bertomeu , J.M Asensi , J. Andreu , R. Alcubilla, “Stability of hydrogenated nanocrystalline silicon thin-film transistors”, Thin Solid Films 395 pp.335–338 (2001).
[12]Pere Roca i Cabarrocas, Anna Fontcuberta i Morral, Sarra Lebib,and Yves Poissant, “Plasma production of nanocrystalline siliconparticles and polymorphous silicon thin films for large-area electronic devices”, Pure Appl. Chem., Vol. 74, No. 3, pp. 359–367, (2002).
[13]M. Vieira, S. Koynov, A. Fantoni, R. Schwarz, “Wide spectral response in uc-Si photodiode”, Thin Solid Films 296 pp.164–167 (1997).
[14]P. J. Ventura, M. F Cerqueira, M. C. Carmo, J. A. Ferreira, “ Photoluminescence and structure properties from uc-Si:H and uc-Si:H-PS samples”, Thin Solid Films 296 pp.126–128 (1997).
[15]M. K. van Veen, C.H.M. van der Werf, J. K.Rath, R.E.I.Schropp, “Incoporation of amorphous and microystalline silicon in n-i-p solar cells”, Thin Solid Films 430 pp.216–219 (2003).
[16]F. Edlman, Y. Komem, M. Stolzer, P. Werner, R. Butz, “ Nanocrystalline SiGe Films : Structure and Properties”, Semiconducting and Semi-Insulating Materials Conference IEEE pp.205-210, 29 April-3 May (1996).
[17]J. I. Hanna, T. Ohuchi, M. Yamamoto, “Direct fabrication of SiGe crystallites on glass substrate: from nanocrystals to microcrystals”, Journal of Non-Crystalline Solids 198-200 pp.879-882 (1996).
[18]Akihisa Matsuda, “Growth mechanism of microsytalline silicon obtained from reactive plasmas”, Thin Solid Films 337 pp.1–6 (1999).
[19] Pere ROCA i CABARROCAS, Anna FONTCUBERTA I MORRAL, Billel KALACHE, and Samir KASOUIT, “Microcrystalline Silicon Thin Films Grown by PECVD. Growth Mechanisms and Grain Size Control”, Solid State Phenomena Vol. 93 pp. 257-268 (2003).
[20] X. L. Jiang, Y. L. He, H. L. Zhu, “The effect of passivation of boron dopants by hydrogen in nano-crystalline and micro-crystalline silicon films”, J. Phys.: Condens. Matter 6 713-718 (1994).
[21] 洪志昇,方炎坤, ”碘摻雜TPD、Alq3、CuPC及五環素有機薄膜特性之研究”,國立成功大學電機工程學系碩士論文,民94年6月。
[22] T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, ”Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids 266-269 201-205. (2000)
[23] C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter 66 (23), 5 June (1995).
[24] P. Roca i Cabarrocas, ”Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids 266-269 31-37 (2000).
[25] Akihisa Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasma”. Thin Solid Films 337 1-6 (1999).
[26] O. Vetterl, P. Hapke, F. Finger, L. Houben, ”Growth of microcrystalline silicon using the layer-by-layer technique at various plasma excitation frequency”. Journal of Non-Crystalline Solids 227-230. 866-870 (1998).
[27] P. Roca i Cabarrocas, “Plasma enhanced chemical vapor deposition of silicon thin films for large area electronics”, Current Opinion in Solid State and Material Science 6 439-444 (2002).
[28] 林秉章,方炎坤, ”利用層疊氫原子化學回火及電漿輔助化學氣相沉積技術成長低溫奈米矽鍺薄膜之研究”,國立成功大學電機工程學系碩士論文,民94年6月。
[29] M. Krause, H. Stiebig, R.Carius, U. Zastrow, H. Bay, H. Wagner, ”Structural and optoelectronic properties of microcrystalline silicon germanium”, Journal of Non-Crystalline Solids 299-302 158-162 (2002).
[30] Xunming Deng, “High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells”, Annual Technical Progress Report (September 1, 2002 to August 31, 2003)