| 研究生: |
蘇泓瑋 Su, Hong-Wei |
|---|---|
| 論文名稱: |
台灣各產業物質足跡分析與資源效率指標評估 Material Footprints of Taiwan’s Economy: Analyses by Industries and Comparison between Domestic Consumption, Import, and Export Contribution |
| 指導教授: |
陳必晟
Chen, Pi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 234 |
| 中文關鍵詞: | 物質足跡分析 、國內材料消耗 、原材料當量 、投入產出表 、永續發展 、物質流 |
| 外文關鍵詞: | Material footprint analysis, Domestic material consumption, Raw material equivalent, Input-output table, Sustainable development |
| 相關次數: | 點閱:221 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著世界經濟和科技的發展,全球對資源的需求不斷增加,這對有限的自然資源造成了相當大的負擔。 台灣是一個自然資源稀缺的國家,根據海關屬公布之數據,2022年外貿依存度達到118.5%,其中進口依存度為55.9%,出口依存度達62.6%,可見台灣是一個高度依賴貿易且出口風氣盛行的國家。 因此,為避免因國際形勢或價格等原因造成的資源短缺,如何配置資源就成為一個重要的問題。
本研究希望運用物質足跡資料收集與計算,分析國內各行業基礎基礎原料(Raw Material)使用的概況,從而了解基礎原料使用的流向和數量。希望相關企業或政府能根據這些數據,找到潛在的污染源,或是基礎原料消耗熱點,從而做出相應的物質投入規劃或是改進計劃。
本研究主要使用Exiobase V3.8數據庫之數據,配合國內農產、礦業土石開採、及進口之基礎原料,並參考國內公佈的行業關聯表,梳理國內各行業之間的相互依存關係。接著根據歐盟公佈的物質足跡(MF)計算公式,計算進出口的基礎原料當量(RME),即實際投入各行業中的基礎原料量,分析基礎原料在各行業的使用量分布與供需關係。
本研究計算我國之物質足跡後發現,金屬項目資源占物質足跡之貢獻最大,即台灣產業對全球供應鏈消耗之基礎原料種類,以金屬之物質足跡為最高,其原因在於台灣主要出口商品為電子、資通訊設備等高科技產品,同時也有不少工業產品之進出口,致使台灣對於金屬物料之高需求度,再加上國內缺乏金屬礦產與能源礦產,因此造就了該現象。
With the development of world economy and technology, the global demand for resources is increasing, which is a considerable burden on limited natural resources. Taiwan is a country with scarce natural resources. According to the data of the general database, the dependence on foreign trade in 2022 will be 118.5%, and the dependence on imports will be 55.9%, showing that Taiwan is a country highly dependent on imports. Therefore, in order to avoid resource shortages caused by international situations or prices, how to allocate resources has become an important issue.
This study mainly uses the domestically published industry association table, and refers to the data of the Exiobase 3 database to sort out the interdependence relationship among various domestic industries. Then, according to the material footprint (MF) calculation formula announced by the European Union, calculate the raw materials equivalent (RME) of imported and exported, and analyze the distribution of materials in various industries. The current results show that high-tech industries such as the metal industry and the electronics industry, as well as processing industries, mainly export, while relatively basic industries mainly imports.
Through the analysis of material footprint, this research hopes to analyze the general situation of material use in domestic industries, so as to understand the flow and quantity of material use. It is hoped that relevant enterprises or governments can find potential sources of pollution based on these data, so as to make corresponding material input planning or improvement plans.
1. Ã, L., Jaromír Klemeš Ã, J., & Kravanja, Z. (2015). Overview of environmental footprints.
2. Aguiar, A., Chepeliev, M., Corong, E., & van der Mensbrugghe, D. (2022). The Global Trade Analysis Project (GTAP) Data Base: Version 11. Journal of Global Economic Analysis, 7(2), 1–37. https://doi.org/10.21642/JGEA.070201AF
3. Aguiar, A., Narayanan, B., & McDougall, R. (2016). An Overview of the GTAP 9 Data Base. Journal of Global Economic Analysis, 1(1), 181–208. https://doi.org/10.21642/JGEA.010103AF
4. Berrill, P., Miller, T. R., Kondo, Y., & Hertwich, E. G. (2020). Capital in the American carbon, energy, and material footprint. Journal of Industrial Ecology, 24(3), 589–600. https://doi.org/10.1111/jiec.12953
5. Brian Matthews, F. D. (2021). Extraction Rates and the Environmental Impacts of Economic Growth in the Twenty-First Century (W. Leal Filho, A. M. Azul, L. Brandli, A. Lange Salvia, & T. Wall, Eds.). Springer International Publishing. https://doi.org/10.1007/978-3-319-95867-5
6. Bringezu, S., Potočnik, J., Schandl, H., Lu, Y., Ramaswami, A., Swilling, M., & Suh, S. (2016). Multi-scale governance of sustainable natural resource use-Challenges and opportunities for monitoring and institutional development at the national and global level. In Sustainability (Switzerland) (Vol. 8, Issue 8). MDPI. https://doi.org/10.3390/su8080778
7. Buhl, J., Liedtke, C., & Bienge, K. (2017). How much environment do humans need? Evidence from an integrated online user application linking natural resource use and subjective well-being in Germany. Resources, 2–8. https://doi.org/10.3390/resources6040067
8. Buhl, J., Liedtke, C., Teubler, J., & Bienge, K. (2019). The Material Footprint of private households in Germany: Linking the natural resource use and socioeconomic characteristics of users from an online footprint calculator in Germany. In Sustainable Production and Consumption (Vol. 20, pp. 74–83). Elsevier B.V. https://doi.org/10.1016/j.spc.2019.05.001
9. Čuček, L., Klemeš, J. J., & Kravanja, Z. (2012). A review of footprint analysis tools for monitoring impacts on sustainability. Journal of Cleaner Production, 34, 9–20. https://doi.org/10.1016/j.jclepro.2012.02.036
10. Czech Statistical Office. (2015). Input-Output Tables in the Czech Republic - Annex I IMPROVEMENT OF QUALITY NATIONAL ACCOUNTS.
11. Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M., & de Vries, G. (2013). THE CONSTRUCTION OF WORLD INPUT–OUTPUT TABLES IN THE WIOD PROJECT. Economic Systems Research, 25(1), 71–98. https://doi.org/10.1080/09535314.2012.761180
12. Eurostat. (2001). Economy-wide material flow accounts and derived indicators : a methodological guide. Office for Official Publications of the European Communities.
13. Eurostat. (2011). Analysis associated with the Roadmap to a Resource Efficient Europe. http://www.wbcsd.org/templates/TemplateWBCSD5/layout.asp?type=p&MenuId=MTYxNg&doOpe
14. Eurostat. (2022). Documentation of the EU RME model.
15. Eurostat. (2023). Handbook for estimating raw material equivalents of imports and exports and RME-based indicators on the country level-based on Eurostat’s EU RME model. https://ec.europa.eu/eurostat/documents/1798247/6874172/Handbook-country-RME-tool
16. Galli, A., Wiedmann, T., Ercin, E., Knoblauch, D., Ewing, B., & Giljum, S. (2012). Integrating Ecological, Carbon and Water footprint into a “footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecological Indicators, 16, 100–112. https://doi.org/10.1016/j.ecolind.2011.06.017
17. Giljum, S., Bruckner, M., & Martinez, A. (2015). Material footprint assessment in a global input-output framework. Journal of Industrial Ecology, 19(5), 792–804. https://doi.org/10.1111/jiec.12214
18. Giljum, S., Lutter, S., Bruckner, M., & Aparcana, S. (2013). STATE-OF-PLAY OF NATIONAL CONSUMPTION-BASED INDICATORS A review and evaluation of available methods and data to calculate footprint-type (consumption-based) indicators for materials, water, land and carbon Negotiated Procedure ENV Fl/2013/env.fl(2013) 296596.
19. Giljum, S., Lutz, C., & Jungnitz, A. (2008). Quantifying indirect material flows of traded products with a multi-regional environmental input-output model A methodological concept paper. http://www.psi.org.uk/petre
20. Global Footprint Network. (2023, April 4). Footprint Network. Glossary (n.d.a).
21. Hinterberger, F., & Schmidt-Bleek, F. (1999). FORUM: Dematerialization, MIPS and Factor 10 Physical sustainability indicators as a social device. Ecological Economics, 29(1), 53–56. https://doi.org/10.1016/S0921-8009(98)00080-9
22. Holý, V., & Šafr, K. (2017). Disaggregating Input--Output Tables by the Multidimensional RAS Method: A Case Study of the Czech Republic. http://arxiv.org/abs/1704.07814
23. Hsieh, Y.-M., & Hu, A. (2003). A Study on the Environmental Performance of Products-Establishing an Ecological Footprints Conversion Framework for Environmental Impacts.
24. Jiang, M., Behrens, P., Wang, T., Tang, Z., Yu, Y., Chen, D., Liu, L., Ren, Z., Zhou, W., Zhu, S., He, C., Tukker, A., & Zhu, B. (2019a). Provincial and sector-level material footprints in China. Proceedings of the National Academy of Sciences, 116(52), 26484–26490. https://doi.org/10.1073/pnas.1903028116
25. Jiang, M., Behrens, P., Wang, T., Tang, Z., Yu, Y., Chen, D., Liu, L., Ren, Z., Zhou, W., Zhu, S., He, C., Tukker, A., & Zhu, B. (2019b). Provincial and sector-level material footprints in China. Proceedings of the National Academy of Sciences, 116(52), 26484–26490. https://doi.org/10.1073/pnas.1903028116
26. Kovanda, J., Weinzettel, J., & Schoer, K. (2018). What Makes the Difference in Raw Material Equivalents Calculation Through Environmentally Extended Input-Output Analysis? Ecological Economics, 149, 80–87. https://doi.org/10.1016/j.ecolecon.2018.03.004
27. Kurz, H. D., & Salvadori, N. (2003). 3 “Classical” roots of input-output analysis * A short account of its long prehistory.
28. Lahr, M. L., & de Mesnard, L. (2004). Biproportional techniques in input-output analysis: Table updating and structural analysis. Economic Systems Research, 16(2), 115–134. https://doi.org/10.1080/0953531042000219259
29. Lee, Y. J. (2015). Land, carbon and water footprints in Taiwan. Environmental Impact Assessment Review, 54, 1–8. https://doi.org/10.1016/j.eiar.2015.04.004
30. Lenzen, M., Geschke, A., West, J., Fry, J., Malik, A., Giljum, S., Milà i Canals, L., Piñero, P., Lutter, S., Wiedmann, T., Li, M., Sevenster, M., Potočnik, J., Teixeira, I., Van Voore, M., Nansai, K., & Schandl, H. (2022). Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nature Sustainability, 5(2), 157–166. https://doi.org/10.1038/s41893-021-00811-6
31. Lenzen, M., Moran, D., Kanemoto, K., & Geschke, A. (2013). BUILDING EORA: A GLOBAL MULTI-REGION INPUT–OUTPUT DATABASE AT HIGH COUNTRY AND SECTOR RESOLUTION. Economic Systems Research, 25(1), 20–49. https://doi.org/10.1080/09535314.2013.769938
32. Materialflows.net. (2023a, April 14). Decoupling material use and economic performance .
33. Materialflows.net. (2023b, April 19). Trends of material flows per country/region, 1970-2019.
34. Matuštík, J., & Kočí, V. (2021). What is a footprint? A conceptual analysis of environmental footprint indicators. In Journal of Cleaner Production (Vol. 285). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.124833
35. Michael Lettenmeier, Holger Rohn, Christa Liedtke, Friedrich Schmidt-Bleek, Katrin Bienge, Dafne Mazo Urbaneja, & Jade Buddenberg. (2009). Resource productivity in 7 steps: How to develop eco-innovative products and services and improve their material footprint. https://epub.wupperinst.org/frontdoor/deliver/index/docId/3384/file/WS41.pdf
36. Mínguez, R., Oosterhaven, J., & Escobedo, F. (2009). Cell-corrected RAS method (CRAS) for updating or regionalizing an input-output matrix. Journal of Regional Science, 49(2), 329–348. https://doi.org/10.1111/j.1467-9787.2008.00594.x
37. Muñoz, P., Giljum, S., & Roca, J. (2009). The raw material equivalents of international trade: Empirical evidence for Latin America. Journal of Industrial Ecology, 13(6), 881–897. https://doi.org/10.1111/j.1530-9290.2009.00154.x
38. Oberle, B., Bringezu, S., Hatfield Dodds, S., Hellwig, S., Schandl, H., Clement, J., & United Nations Environment Programme. (2019). Global resources outlook 2019 natural resources for the future we want.
39. OECD. (2019). Global Material Resources Outlook to 2060.
40. OECD. (2021). Trade in Value Added.
41. Office for National Statistics. (2019). Measuring material footprint in the UK: 2008 to 2016. https://www.ons.gov.uk/economy/environmentalaccounts/methodologies/measuringmaterialfootprintintheuk2008to2016
42. Piñero, P., Cazcarro, I., Arto, I., Mäenpää, I., Juutinen, A., & Pongrácz, E. (2018). Accounting for Raw Material Embodied in Imports by Multi-regional Input-Output Modelling and Life Cycle Assessment, Using Finland as a Study Case. Ecological Economics, 152, 40–50. https://doi.org/10.1016/j.ecolecon.2018.02.021
43. Pothen, F., & Tovar Reaños, M. A. (2018). The Distribution of Material Footprints in Germany. Ecological Economics, 153, 237–251. https://doi.org/10.1016/j.ecolecon.2018.06.001
44. Rees, W., & Wackernagel, M. (1996). Urban Ecological Footprints: Why Cities Cannot be Sustainable-and Why They are a Key to Sustainability.
45. Rodríguez, M., & Camacho, J. A. (2020a). The development of trade of biomass in Spain: A raw material equivalent approach. Biomass and Bioenergy, 133. https://doi.org/10.1016/j.biombioe.2019.105450
46. Rodríguez, M., & Camacho, J. A. (2020b). The development of trade of biomass in Spain: A raw material equivalent approach. Biomass and Bioenergy, 133. https://doi.org/10.1016/j.biombioe.2019.105450
47. Roman Keeney, Badri Narayanan, & Ernesto Valenzuela. (2016). The Global Trade Analysis Project’s (GTAP’s) Database and CGE Model as a Tool for Agricultural and Environmental Economic Analysis (R. Keeney, B. Narayanan, & E. Valenzuela, Eds.; pp. 31–56). https://doi.org/10.1142/9789813208179_0002
48. Schoer, K. 1947-, Dittrich, M., Limberger, S., Ewers, B., Kovanda, J., Weinzettel, J., & Europäische Kommission Statistisches Amt. (2021). Disaggregating input-output tables for the calculation of raw material footprints minimum requirements, possible methods, data sources and a proposed method for Eurostat.
49. Schoer, K., Weinzettel, J., Kovanda, J., Giegrich, J., & Lauwigi, C. (2012). Raw Material Consumption of the European Union – Concept, Calculation Method, and Results. Environmental Science & Technology, 46(16), 8903–8909. https://doi.org/10.1021/es300434c
50. Stadler, K., Wood, R., Bulavskaya, T., Södersten, C. J., Simas, M., Schmidt, S., Usubiaga, A., Acosta-Fernández, J., Kuenen, J., Bruckner, M., Giljum, S., Lutter, S., Merciai, S., Schmidt, J. H., Theurl, M. C., Plutzar, C., Kastner, T., Eisenmenger, N., Erb, K. H., … Tukker, A. (2018a). EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. Journal of Industrial Ecology, 22(3), 502–515. https://doi.org/10.1111/jiec.12715
51. Stadler, K., Wood, R., Bulavskaya, T., Södersten, C.-J., Simas, M., Schmidt, S., Usubiaga, A., Acosta-Fernández, J., Kuenen, J., Bruckner, M., Giljum, S., Lutter, S., Merciai, S., Schmidt, J. H., Theurl, M. C., Plutzar, C., Kastner, T., Eisenmenger, N., Erb, K.-H., … Tukker, A. (2018b). EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. Journal of Industrial Ecology, 22(3), 502–515. https://doi.org/10.1111/jiec.12715
52. The Global Goals. (2023, April 23). 17項永續發展目標.
53. Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., & de Vries, G. J. (2015). An Illustrated User Guide to the World Input-Output Database: the Case of Global Automotive Production. Review of International Economics, 23(3), 575–605. https://doi.org/10.1111/roie.12178
54. Trabucchi, P., Marcuzzo, M. C., Deleplace, G., & Paesani, P. (2020). Considerations on the Development of Quesnay’s Tableau Économique. https://doi.org/https://doi.org/10.1007/978-3-030-42925-6_7
55. Trinh, B., & Viet Phong, N. (2013). A Short Note on RAS Method. In Advances in Management & Applied Economics (Vol. 3, Issue 4). online) Scienpress Ltd. https://www.researchgate.net/publication/308018908
56. Tukker, A., de Koning, A., Wood, R., Hawkins, T., Lutter, S., Acosta, J., Rueda Cantuche, J. M., Bouwmeester, M., Oosterhaven, J., Drosdowski, T., & Kuenen, J. (2013). EXIOPOL – DEVELOPMENT AND ILLUSTRATIVE ANALYSES OF A DETAILED GLOBAL MR EE SUT/IOT. Economic Systems Research, 25(1), 50–70. https://doi.org/10.1080/09535314.2012.761952
57. UNEP. (2021). The use of natural resources in the economy A Global Manual on Economy Wide Material Flow Accounting. http://www.un.org/Depts/Cartographic/english/htmain.htm
58. UNEP and IRP. (2020). SUSTAINABLE TRADE IN RESOURCES GLOBAL MATERIAL FLOWS, CIRCULARITY AND TRADE.
59. United Nations Statistical Commission. (2022). Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development Goals and targets (from the 2030 Agenda for Sustainable Development) Indicators.
60. Wackernagel, M., Stechbart, M., Rizk, S., & Reed, A. (2008). The Ecological Footprint Atlas.
61. Wbcsd. (2016). LIFESTYLE MATERIAL FOOTPRINT : An explanation. https://docs.wbcsd.org/2016/12/WBCSD_Methodology_Material_Footprint.pdf
62. WCED. (1987). Report of the World Commission on Environment and Development: Our Common Future Towards Sustainable Development 2. Part II. Common Challenges Population and Human Resources 4.
63. Weinzettel, J., Hertwich, E. G., Peters, G. P., Steen-Olsen, K., & Galli, A. (2013). Affluence drives the global displacement of land use. Global Environmental Change, 23(2), 433–438. https://doi.org/10.1016/j.gloenvcha.2012.12.010
64. Wiedmann, T. O., Schandl, H., Lenzen, M., Moran, D., Suh, S., West, J., & Kanemoto, K. (2015). The material footprint of nations. Proceedings of the National Academy of Sciences of the United States of America, 112(20), 6271–6276. https://doi.org/10.1073/pnas.1220362110
65. World bank. (2023). World Bank national accounts data, and OECD National Accounts data files. World Bank.
66. WU Vienna. (2022a). Material Footprint (RMC) by country of origin.
67. WU Vienna. (2022b). Raw Material Profile.
68. Yamano, N., & Webb, C. (2018). Future Development of the Inter-Country Input-Output (ICIO) Database for Global Value Chain (GVC) and Environmental Analyses. Journal of Industrial Ecology, 22(3), 487–488. https://doi.org/10.1111/jiec.12758
69. 中華民國經濟部統計處. (2023). 常用經濟統計用語解釋.
70. 王塗發. (2019). 投入產出分析:理論與實務.
71. 徐世勳 & 劉瑞文. (2020). 投入產出分析概論.
72. 湯士萱. (2022). 中國貿易轉型的趨勢與影響. https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xNTE4Mi8zMWM3MzEyOS1kZGNjLTQwZDgtOTk5Yi05ODk2ODZjZTY4MDAucGRm&n=MTMu5Lit5ZyL6LK%2F5piT6L2J5Z6L55qE6Lao5Yui6IiH5b2x6Z%2B%2FLnBkZg%3D%3D&icon=.pdf
73. 財政部統計局. (2023). 111年我國出進口貿易概況. https://service.mof.gov.tw/public/Data/statistic/bulletin/112/111%E5%B9%B4%E6%88%91%E5%9C%8B%E5%87%BA%E9%80%B2%E5%8F%A3%E8%B2%BF%E6%98%93%E6%A6%82%E6%B3%81.pdf
74. 經濟部國際貿易局 & 外貿協會. (2023). 2022 年國際貿易情勢分析. https://www.trade.gov.tw/Files/PageFile/762840/762840bvuu320230601113219.pdf
75. 郭盈漢. (2010). Ecological Performance Evaluation of Urban Land Consolidation.