簡易檢索 / 詳目顯示

研究生: 謝惠臻
Hsieh, Hui-Chen
論文名稱: 全基因體篩選出血性大腸桿菌誘發線蟲腸道微絨毛異位之毒理因子
A Genome-wide Screen for the Bacterial Factors Involved in EHEC-induced Intestinal ACT-5 Mislocalization in C. elegans
指導教授: 陳昌熙
Chen, Chang-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 31
中文關鍵詞: 出血性大腸桿菌腸壁損害
外文關鍵詞: Enterohemorrhagic Escherichia coli, attaching and effacing (A/E) lesion
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 出血性大腸桿菌血清型O157:H7的感染能夠在人類造成出血性腹瀉及溶血性尿毒症,並且導致腸壁損害 (attaching and effacing lesion, A/E lesion),此為出現在腸道的特殊病灶,其特色為出血性大腸桿菌會抹除腸道表面之微絨毛並且造成腸道表面形成凸起結構 (pedestal-like structure),再透過此結構緊密黏附在腸道上。根據先前的研究發現細菌的黏附是由LEE致病基因群 (the pathogenicity island locus of enterocyte effacement) 調控,然而微絨毛抹除的致病機制目前仍然有待釐清。因此我們藉由全基因體篩選,試圖找出出血性大腸桿菌誘發線蟲腸道微絨毛異位 (ACT-5 mislocalization) 的毒理因子。首先,我們透過基因轉殖在微絨毛肌動蛋白 (microvillar actin protein, ACT-5) 表現紅色螢光的秀麗隱桿線蟲 (Caenorhabditis elegans),並在感染出血性大腸桿菌後觀察其紅色螢光表現,我們將螢光從腸道表現轉移至細胞質中同時異常聚集的現象定義為腸道微絨毛異位表現。從17802個跳躍子突變菌株中篩選出48個降低線蟲腸道微絨毛異位表現的突變菌株,其中脂多醣生合成相關基因佔了大多數,然而,我們選擇了一功能未知基因,名為z1205,當作目標基因。為了證實此基因與微絨毛抹除有關,我們透過基因缺失突變與基因回補實驗,發現此基因的缺失確實能降低出血性大腸桿菌抹除線蟲腸道微絨毛的能力,而回補此基因後,細菌的抹除能力又能得到回復。在蛋白功能研究方面,我們利用西方墨點法偵測細菌的Z1205蛋白表現,卻無法在野生型的細菌中偵測到蛋白,因此,我們推測此基因要在細菌感染宿主的過程中才會表現而設計了報導基因偵測實驗 (reporter assay),由此發現z1205啟動子需要在感染線蟲的過程中才會活化,進而推論z1205基因要在感染過程中才會表現。概括上述,z1205基因是出血性大腸桿菌造成宿主腸道微絨毛異位表現的毒理因子,且此基因需要在感染過程中才會表現。

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) infection leads to hemorrhagic diarrhea and hemolytic uremic syndrome in human. EHEC can induce a characteristic pathology called attaching and effacing (A/E) lesion, which is that EHEC effaces host intestinal microvilli and attaches to intestinal epithelium through a pedestal-like structure. Previous study found that bacterial attachment is mediated by the pathogenicity island locus of enterocyte effacement (LEE); however, the mechanism of microvillar effacement remains unclear. Here, we conducted a genome-wide transposon library screening to identify the bacterial factors involved in EHEC-induced microvillar actin rearrangement in C. elegans. We used a specific transgenic C. elegans with the expression of the microvillar actin protein, ACT-5, labeled with mCherry and examined the florescent expression pattern upon EHEC infection. We defined microvillar actin rearrangement is that the ACT-5 re-localizes from apical side to cytosol, as ACT-5 mislocalization. After screening 17,802 transposon mutants, we identified 48 hits that showed reduced ACT-5 mislocalization in C. elegans. Among them, LPS biosynthesis related genes were the majority; however, one gene with unknown function named z1205 attracted our attention. To reconfirm our results, we generated an z1205 isogenic deletion mutant and found that C. elegans exhibited reduced ACT-5 mislocalization while feeding this z1205 mutant. We also performed a gene complementation test and found that C. elegans exhibited compatible ACT-5 mislocalization ratio to the EHEC wild type. To investigate the protein function of Z1205, we generated an antibody specifically against Z1205. However, we failed to detect Z1205 protein expression in wild-type EHEC strain but not in the complementation strain. Therefore, we hypothesized that the Z1205 protein might express during EHEC infection in vivo. We established a reporter assay and found z1205 promoter was activated when EHEC infected C. elegans. Overall, our result suggested that the z1205 gene is one of the virulence determinants of EHEC effacement and the z1205 gene might express during EHEC infection in vivo.

    中文摘要 II ABSTRACT III 誌謝 V INTRODUCTION 1 MATERIAL AND METHODS 3 STRAINS AND MAINTENANCE OF C. ELEGANS 3 BACTERIAL STRAINS AND PLASMIDS 3 ECTOPIC ACT-5 CELLULAR LOCALIZATION ASSAY 3 SCREENING FOR EFFACING VIRULENCE FACTORS OF HEMORRHAGIC E COLI 4 IDENTIFICATION OF THE MUTATION SITES OF THE SELECTED TN5 TRANSPOSITION CLONES 4 CONSTRUCTION OF BACTERIAL DELETION MUTANT STRAINS 5 CONSTRUCTION OF COMPLEMENTATION STRAIN OF Z1205 MUTANT 5 SCANNING ELECTRON MICROSCOPE 6 WESTERN BLOTTING 7 EHEC PROPHAGE INDUCTION BY MITOMYCIN 7 Z1205 PROMOTER REPORTER ASSAY 8 NGS ANALYSIS 8 RESULTS 9 SCREENING FOR EFFACING VIRULENCE GENES OF EHEC 9 Z1205 IS REQUIRED FOR THE EFFACING VIRULENCE OF EHEC IN C. ELEGANS 9 Z1205 MUTANT ATTENUATED EFFACING ABILITY OF EHEC IN VITRO 10 Z1205 PROTEIN WAS NOT DETECTED IN BOTH CELL LYSATE AND SUPERNATANT 11 Z1205 PROMOTER IS ACTIVATED WHEN EHEC INFECTED C. ELEGANS 11 DISCUSSION 13 REFERENCE 16 FIGURE AND LEGENDS 18 FIGURE. 1 18 FIGURE. 2 21 FIGURE. 3 22 FIGURE. 4 24 FIGURE. 5 26 FIGURE. 6 28 TABLE 29 TABLE 1. THE NEMATODE STRAINS USED FOR THIS STUDY. 29 TABLE 2. THE BACTERIA STRAINS USED FOR THIS STUDY. 29 TABLE 3. SUMMARY OF EFFACING VIRULENCE GENES OF EHEC. 30 TABLE 4. NGS FOR ED207 F-11 31

    1 Lim, J. Y., Yoon, J. & Hovde, C. J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 20, 5-14 (2010).
    2 Chou, T. C. et al. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol 15, 82-97, doi:10.1111/cmi.12030 (2013).
    3 Goldwater, P. N. & Bettelheim, K. A. Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med 10, 12, doi:10.1186/1741-7015-10-12 (2012).
    4 Pinaud, L., Sansonetti, P. J. & Phalipon, A. Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors. Trends Microbiol 26, 266-283, doi:10.1016/j.tim.2018.01.010 (2018).
    5 Mohawk, K. L. & O'Brien, A. D. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. J Biomed Biotechnol 2011, 258185, doi:10.1155/2011/258185 (2011).
    6 周廷蓁. 以功能性基因體學法分析出血性大腸桿菌於線蟲中所需之毒理因子, 國立成功大學, (2012).
    7 Kuo, C. J. et al. A multi-omic analysis reveals the role of fumarate in regulating the virulence of enterohemorrhagic Escherichia coli. Cell Death Dis 9, 381, doi:10.1038/s41419-018-0423-2 (2018).
    8 Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).
    9 Serra-Moreno, R., Acosta, S., Hernalsteens, J. P., Jofre, J. & Muniesa, M. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol 7, 31, doi:10.1186/1471-2199-7-31 (2006).
    10 黃智玟. 探討CDK1在出血性大腸桿菌誘發宿主微絨毛肌動蛋白重新排列之現象中所扮演的角色. (105).
    11 郭承儒. 參與出血性大腸桿菌寄殖之線蟲宿主基因之正向遺傳學篩選 碩士 thesis, 國立成功大學, (2012).
    12 Sato, M. et al. Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Mol Biol Cell 22, 2579-2587, doi:10.1091/mbc.E11-04-0279 (2011).
    13 Strockbine, N. A. et al. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun 53, 135-140 (1986).
    14 Perna, N. T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529-533, doi:10.1038/35054089 (2001).

    無法下載圖示 校內:2025-07-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE