| 研究生: |
鄭勝元 Cheng, Shen-Yuan |
|---|---|
| 論文名稱: |
熱處理氣氛對410及316(Cu)不銹鋼銹皮生成
及後續酸洗效果影響之研究 Effect of Heat Treatment Atmosphere on the Scale Formation and Pickling Performance of 410 SS and 316(Cu) SS |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | 410 SS 、酸洗 、水蒸氣 、氣氛 、銹皮 、316(Cu) SS 、氧化 |
| 外文關鍵詞: | oxidation, 316(Cu) SS, water vapor, atmosphere, acid pickling, scale, 410 SS |
| 相關次數: | 點閱:62 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文所探討的主題包括410及316(Cu)不銹鋼的銹皮生成性質及其後續酸洗效果:在410不銹鋼的部份,主要針對熱處理氣氛及鹽浴處理對410 SS於退火時所生成的銹皮性質以及後續酸洗效果之影響進行研究。316(Cu)不銹鋼的部份則是著重於水蒸氣對316(Cu)不銹鋼在固溶化熱處理時的銹皮生成機制及後續酸洗效果之影響。
實驗結果顯示,經過熱輥軋後的410 SS,生長在材料表面的銹皮可輕易的經由硫酸酸洗加以去除。一旦經過退火處理,除銹的難易程度則取決於退火氣氛的種類:在潮濕空氣中所生成的銹皮最難去除;在乾燥空氣及氮氣中生成的銹皮次之;於還原性氣氛中生成的銹皮則是最容易被去除。410 SS在不同氣氛中所生成的銹皮在硫酸水溶液中的穩定性亦可經由量測材料在酸中的開路電位變化來判斷。當試片表面存在附著性較佳的銹皮時,開路電位會維持在較高的數值(約+ 450~+ 650 mVSCE之間),且隨著銹皮逐漸溶解或剝落,電位會逐漸下降。當銹皮完全被破壞時,酸液直接接觸金屬表面,此時電位會下降至接近金屬在酸液中之腐蝕電位(約- 450 mVSCE)。
經退火處理的410 SS銹皮結構主要由(Fe, Cr)3O4及Cr2O3所組成。經過鹽浴處理後,在試片表面僅發現Fe3O4存在。另外,由電化學試驗結果指出,利用量測開路電位是否衰退亦可用來預測酸洗終點;當開路電位衰退至不銹鋼的腐蝕電位時,即表示試片已被活化,材料表面之銹皮應已被清除,而清除銹皮所需之活化時間()會隨著硫酸濃度及溫度的增加而減少。
由316(Cu) SS酸洗試驗結果顯示,熱處理氣氛中若存在水蒸氣時,會使得316(Cu) SS銹皮結構變得較為鬆散,因而有助於提升酸洗效率。利用TGA試驗可進一步瞭解316(Cu) SS在1030℃的乾燥空氣中進行熱處理時,試片表面僅生成一層相當薄的Cr2O3,一旦空氣中含0.1 atm 分壓之水蒸氣時,氧化速率會大幅增加,銹皮則變得較複雜且鬆散,呈現多層結構,此多層結構銹皮主要是氧化鉻與富鐵鎳之金屬相互交錯累積而成。
The effect of heat treatment atmosphere on the scale formation and pickling performance of 410 and 316(Cu) stainless steels (SSs) was investigated.
The experimental results indicate that the scale formed on 410 SS in the moist air was the most difficult to remove, while descaling was easy when the stainless steel was annealed in a reducing atmosphere (10% H2 + N2). The composition and microstructure of the oxides formed during annealing strongly affected the descaling performance.
The scales formed on annealed 410 SS were composed mainly of (Cr, Fe)3O4 and Cr2O3. After molten salt treatment, only Fe3O4, was detected on top of the substrate. Potential decay was noticed during pickling in sulfuric acid, which was associated with the scale removing process. Furthermore, the activation time (τ) required to complete the descaling decreased with increasing concentration and temperature of sulfuric acid.
Water vapor was detrimental to the pickling of 410 SS, while the presence of water vapor in the heat treatment atmosphere enhanced the descaling efficiency of 316(Cu) SS. From TGA results, the oxidation rate of 316(Cu) SS was accelerated in wet air as compared to that in dry air. In addition, a significant breakaway oxidation occurred, resulting in substantial weight gain, as the 316(Cu) SS was oxidized in moist air at temperatures above 950℃. The scaling behavior of 316(Cu) SS in wet air at 1030℃ could be divided into two stages based on the alteration of the oxidation rate. In each stage, the scale on 316(Cu) SS exhibited a different structure and morphology.
魏豊義,“不銹鋼的高溫氧化和除銹”,不銹鋼技術研討會報告專輯, 1989.
. Masahiko Ito, Masahiro Yoshioka, Toshiki Isobe, Yoshikazu Seino, Hisao Yasuhara, Yoshikazu Kawabata, and Sazamu Nakai, ISIJ International, Vol. 37, No. 1, 1997, p. 47.
. Masahiko Ito, Masahiro Yoshioka, Toshiki Isobe, Yoshikazu Seino, Hisao Yasuhara, Yoshikazu Kawabata, and Sazamu Nakai, ISIJ International, Vol. 37, No. 4, 1997, p. 391.
. J. D. Anderson, “Pickling: An art or a science”, Amchem. Products Inc., U. S. S. Monroevulle, P. A., U.S.A., 1979.
. B. Ozturk, and R. Matway, “Oxidation of Type 304 Stainless Steels under Simulated Annealing Conditions”, ISIJ International, Vol. 37, No. 2, 1996, p. 169.
. Geroge Y. Lai, “High Temperature Corrosion of Engineering Alloy”, ASM, p. 382, 1990.
. Earl A. Gulbransen and Kenneth F. Andrew, “Oxidation Studies on the Iron-Chromium-Aluminum Heater Alloys”, Journal of Electrochemical Society, 1959, p. 294.
. R. T. Foley, “Oxidation of Iron-Nickel Alloys”, Journal of Electrochemical Society, Vol. 109, No.4, 1962, p. 278.
. C. T. Fujii and R. A. Meussner, “Oxide Structures Produced on Iron-Chromium Alloys by a Dissociative Mechanism”, Journal of Electrochemical Society, Vol. 110, No.12, 1963, p. 1195.
. C. T. Fujii and R. A. Meussner, The Mechanism of the High-Temperature Oxidation of Iron-Chromium Alloys in Water Vapor, Journal of Electrochemical Society, Vol. 111, No.11, 1964, p. 1215.
. D. Caplan and M. Cohen, “High Temperature Oxidation of Chromium-Nickel Steels”, Corrosion, Vol. 15, 1959, p. 57.
. Shen Jianian, Zhou Longjiang, and Li Tiefan, “High-Temperature Oxidation of Fe-Cr Alloys in Wet Oxygen”, Oxidation of Metals, Vol. 48, Nos. 3/4, 1997, p. 347.
. B. A. Pint, J. M. Rakowski, “The Effect of Alloy Composition on the Performance of Stainless Steels in Exhaust Gas Environments”, in Proceedings NACE, Paper 00259, NACE Corrosion 2000, Orlando, Florida, March 26-31, 2000.
. Mark. A. Harper, Larry R. Walker, “Chromium depletion in High Temperature Alloys during Elevated Temperature”, in Proceeding of NACE Corrosion 2001, Paper 01154, Houston, Texas, March 11-16, 2001.
. I. G. Wright and B. A. Pint, “An Assessment of the High Temperature Oxidation Behavior of Fe-Cr Steels in Water Vapor and Steam”, in Proceeding of NACE Corrosion 2001, Paper 02377, 2002.
. L. Mikkelsen, S. Linderoth, “High Temperature Oxidation of Fe-Cr alloy in O2-H2-H2O atmospheres; microstructure and kinetics”, Materials Science and Engineering A, Vol. 361, 2003, p. 198.
. S. Amy, P. Vangeli, “Water Vapor Effect on the High Temperature Resistant Grades”, in Proceedings Eurocorr 2001, Riva del Garda, September 30, 2001.
. Shigeji Taniguchi, Narihito Hongawara, Toshio Shibata, “Influence of Water Vapor on the Isothemal Oxidation Behavior of TiAl at High Temperatures”, Materials Science and Engineering A, Vol. 307, 2001, p. 107.
. D. Lai, R. J. Borg, M. J. Braber, J. D. Mackenzie, and C. E. Birchenall, “Oxidation of Iron Chromium Alloys at 750-1025℃”, Corrosion, Vol. 17, July 1961, p. 109.
. L. A. Fernando and D. R. Zaremski, “Some Fundmental Aspects of Annealing and Pickling Stainless Steels”, Metallurgical Transactions A, Vol. 19, 1988, p. 1083.
. Masahiko Ito, Rinso Tachibana, Yoshikazu Seino, Akira Yamamoto, Yoshikazu Kawabata, and Kazuhiro Uchino, “Descaling Behavior of Type 430 Hot-Rolled Stainless Steel Coil”, Japanese journal of applied physics , Vo1. 36, No. 12, 1997, p. 7404.
. Y. D. Lee,Y. H. Lee,J. S. Lee and J. K. Kim, “Descaling Behavior of Type 304 and 430 Annealed Strips”, Proceedings of International Conference on Stainless Steels, Chiba, ISIJ, 1991, p. 952.
. Masahiko Ito, Rinso Tachibana, Yoshikazu Seino, Akira Yamamoto, and Yoshikazu Kawabata, Journal of Chemical Engineering of Japan, Vo1. 31, No. 4, 1998, p. 589.
. A. John Sedriks, “Corrosion of Stainless Steel”, A Wiley Interscience Publication, John Wiley & Sons, Inc., 1996, p. 360.
. B. S. Covino, Jr., J. V. Scalera, T. J. Driscoll and J. P. Carter, “Dissolution Behavior of 304 Stainless Steel in HNO3/HF Mixtures”, Metallurgical Transactions, Vol. 17A, 1986, p. 137.
. U.S. Patent 5.908.511, Inventor Marco Bianchi, Milan, Italy, “Process for Stainless Steel Pickling and Passivation without Using Nitric Acid”, Jun. 1, 1999.
. U.S. Patent 5.354.383, Inventor Marco Bianchi, Milan, Italy, “Process for Stainless Steel Pickling and Passivation without Using Nitric Acid”, Oct. 11, 1994.
. U.S. Patent 5.843.240, Inventor: Cesare Pedrazzini, Milano; Paolo Giodani, Crema, both of Italy, “Process for Stainless Steel Pickling and Passivation without Using Nitric Acid”, Dec. 1, 1998.
. L. Narváez, E. Cano, and J. M. Bastidas, “Effect of Ferric Ions in AISI 316L Stainless Steel Pickling using an Environmentally Friendly H2SO4-HF-H2O2 Mixture”, Materials and Corrosion, Vol. 54, 2003, p. 84.
. N. Asrar, and C.P. Thakur, “Pickling Silicon Steels in Mixed Acid Solutions”, Metal Finishing, February, 1995, p. 70.
. T. Yamazaki, and M. Miyake, “Application of the Salt Film Method to Descaling Stainless Steel”, Metal Finishing, October, 1984, p. 25.
. Taylor Lyman, in Metal Handbooks, 8th Edition, Vol.2, 1969, p. 356.
. J. M. K. Hildén, J. V. A. Virtanen, and R. L. K. Ruoppa, “Mechanism of Electrolytic Pickling of Stainless Steels in a Neutral Sodium Sulphate Solution”, Materials and Corrosion, Vol. 51, 2000, p. 728.
. J. Hildén, J. Virtanén, O. Forsén, J. Aromaa, “Electrolytic Pickling of Stainless Steel Studied by Electrochemical Polarisation and DC Resistance Measurements Combined with Surface Analysis”, Electrochimica Acta, Vol. 46, 2001, p. 3859.
. N. Ipek, N. Lior, F. Bark, A. Eklund, and A. Alemany, “Simple Analytical Model Predicting Some Features of the Electrolytic Steel Pickling Process”, Russian Journal of Electrochemistry, Vol. 38, 2002, p. 274.
. Sadao Hasuno, Massaaki Ishikawa, Makoto Murabayashi, Yoshihiro Yamaguchi, Suenobu Shiiba, Takashi Shiokawa, “Characteristics of Electrolytic Neutral Pickling for Cold-Rolled Stainless Steel Strip”, 川崎製鐵技報, Vol. 23, 1991, p. 29.
. Satoshi Owada, Eiko Yasuhara, Osamu Hashimoto, Tatsuo Kawasaki, and Kanji, “A New Electrolytic Descaling in HNO3-HCl Acid for Development of Functional Stainless Steels”, Proceeding of International Conference on Stainless Steels, Chiba, ISIJ, 1991, p. 937.
. B. J. Goode, R. D. Jones, J. N. H. Howells, “Ultrasonic Pickling of Steel Strip”, Ultrasonics, Vol. 36, 1998, p. 79.
D. R. Gaskell, “Introduction to Metallurgical Thermodynamics, 2nd ed.”, Megraw -Hill, 1983.
. Denny A. Jones, “Principles and Prevention of Corrosion, 2nd ed.”, Macmillan Publishing Company, New York, 1992.
. N. Birks, G. H. Meier, “Introduction to High Temperature Oxidation of Metals”, Eward Amold, Pittsburgh, 1982.
. P. Kofstad, “High Temperature Corrosion”, Elsevier Applied Science, London and New York, 1988.
. 日本腐蝕防蝕學會, 譯者:黃忠良, “金屬材料之高溫氧化與腐蝕, 復漢出版社”, 1988.
. A. S. Khanna, “Introduction to High Temperature Oxidation and Corrosion”, ASM International, 2002.
. G. C. Wood,and D. P. Whittle, “On the Mechanism of Oxidation of Iron-16.4%Chromium at High Temperature”, Corrosion Science, Vol. 4, 1964, p. 263.
. H. J. Yearian, H. E. Boren, JR. and R. E. Warr, “The Structure of Oxide Scale on Chromium Steels”, Corrosion, Vol. 12, 1956, p. 561.
. A. U. Seybolt, “Observation of the Fr-Cr-O System”, Journal of Electrochemical Society, Vol. 107, No. 3, 1960, p. 986.
. R. A. Rapp, “Kinetics, Microstructures and Mechanism of Internal Oxidation- Its Effect and Prevention in High Temperature Alloy Oxidation”, Corrosion, Vol. 21, 1965, p. 382.
. I. Kvernes, M. Oliveira and P. Kofstad, “High Temperature Oxidation of Fe-13Cr-xAl Alloys in Air/H2O Vapor Mixtures”, Corrosion Science, Vol. 17, 1977, p. 237.
. R. Peraldi and B. A. Pint, “Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air with Water Vapor” , Oxidation of Metals, Vol. 61, No. 5/6, 2004, p. 463.
. D. L. Douglass, P. Kofstad, A. Rahmel, and G. C. Wood, “International Workshop on High-Temperature Corrosion”, Oxidation of Metals, Vol. 45, No. 5/6, 1996, p. 529.
. S. Henry, A. Galeria and L. Antoni, “Abnormal Oxidation of Stabilized Ferritic Stainless Steels in Water Vapor”, Materials Science Forum, Vols. 369-372, 2001, p. 353.
. S. Henry, A. Galeria and L. Antoni, “Abnormal Oxidation of Stabilized Ferritic Stainless Steels in Water Vapor”, Materials Science Forum, Vols. 369-372, 2001, p. 353.
. R. J. Hussey, and M. J. Graham, “The Influence of Reactive-Element Coatings on the High-Temperature Oxidation of Pure-Cr and High-Cr-Content Alloys”, Oxidation of Metals, Vol. 45, Nos. 3/4, 1996, p. 349.
. A. Rahmel and J. Tobolski, “Einfluss Von Wasserdampf Und Kohlendioxyd auf Die Oxydation Von Eisen in Sauerstoff Bei Hohen Temperaturen”, Corrosion Science, Vol. 5, 1965, p. 333.
. C. W. Tuck, M. Odgers and K. Sachs, “The Oxidation of Iron at 950℃ in Oxygen/Water Vapour Mixtures”, Corrosion Science, Vol. 9, 1969, p. 271.
. T. Ericsson, “Stratified Oxide Scale Growth on Two Cr-Ni Steels Oxidized in High-Pressure Steam at 800℃”, Oxidation of Metals, Vol. 2, No. 2, 1970, p. 173.
. T. Ericsson, “A Study of the Cr-Depleted Surface Layers Formed on Four Cr-Ni Steels during Oxidation in Steam at 600℃ and 800℃”, Oxidation of Metals, Vol. 2, No. 4, 1970, p. 401.
. N. Ostuka, Y. Shida, and H. Fujikawa, “Internal-External Transition for Oxidation of Fe-Cr-Ni Austenitic Stainless Steels in Steam”, Oxidation of Metals, Vol. 32, 1989, p. 13.
. R. M. Hudson, and C. J. Warning, Metal Finishing, March, 1984, p. 39.
. R. M. Hudson, and C. J. Warning, Metal Finishing, April, 1975, p. 42.
. M. T. Makhlouf, S. A. El-Shatory, A El-Said, Materials Chemistry and physics, vol. 43, 1996, p. 76.
. A. M. Al-Mayouf, A. A. Al-Suhybani, A. K. Al-Ameery, Desalination, Vol. 116, 1998, p. 25.
. R. Y. Chen, W. Y. D. Yuen, “Review of the High Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen”, Oxidation of Metals, Vol. 59, Nos. 5/6, 2003, p. 433.
. B. Glesson, S. M. M. Hadavi, and D. J. Young, “Isothermal Transformation Behavior of Thermally Grown Wùstite”, Materials at High temperature, Vol. 17, 2000, p. 311
. H. Silman G. Lsserlis, A. F. Averill,“Protective and Decorative Coatings for Metals”.
. G. Hultquist, B. Tveten, and E. Hornlund, “Hydrogen in Chromium: Influence on the High-Temperature Oxidation Kinetics in H2O, Oxide-Growth Mechanisms, and Scale Aherence”, Oxidation of Metals, Vol. 54, Nos. 1/2, 2000, p. 1.
. T. Ǻkermark, and G. Hultquist, “Oxygen Exchange in Oxidation of an Fe-20Cr-10Al Alloy in 10 mbar O2/H2O-Gas Mixture” ,Oxidation of Metals, Vol. 47, Nos. 1/2, 1997, p. 117.
. H. Asteman, J. E. Svennsson, L. G. Johansson, and M. Norell, “Indication of Chromium Oxide Hydroxide Evaporation during Oxidation of 304L at 873K in the Presence of 10% Water Vapor”, Oxidation of Metals, Vol. 52, No. 1/2, 1999, p. 95.
. H. Asteman, J. E. Svennsson, L. G. Johansson, and M. Norell, “Influence of WaterVapor and Flow Rate on the High-Temperature Oxidation of 304L; Effect of Chromium Oxide Hydroxide Evaporation”, Oxidation of Metals, Vol. 54, No. 1/2, 2000, p. 11.
. H. Asteman, K. Segerdahl, J. E. Svennsson, and L. G. Johansson, “The Influence of Water Vapor on the Corrosion of Chromia-Forming Steels”, Materials Science Forum, Vols. 369-372, 2001, p. 277.
. H. Asteman, J. E. Svennsson, L. G. Johansson, and M. Norell, “Evidence for Chromium Evaporation Influencing the Oxidation of 304L: The Effect of Temperature and Flow Rate”, Oxidation of Metals, Vol. 57, No. 3/4, 2002, p. 193.
. H. Asteman, J.E. Svennsson, and L.G. Johansson, “Oxidation of 310 Steel in H2O/O2 mixtures at 600℃: The Effect of Water Vapor Enhanced Chromium Evaporation”, Corrosion Science, Vol. 44, 2002, p. 2635.
. H. Asteman, J.E. Svennsson, L.G. Johansson, and M. Norell, “Effect of Water-Vapor-Induced Cr Vaporation on the Oxidation of Austenitic Stainless Steels at 700 and 900℃”, Journal of Electrochemical Society, Vol. 151, 2004, p. 141.
. B. B. Ebbinghaus, “Thermodynamics of Gas Phase Chromium Species: The Cjromium Oxides, the Chromium Oxyhydrooxides, and Volatility Calculations in Waste Incineration Processes”, Combustion and Flame, Vol. 93, 1993, p. 119.
. Y. W. Kim and G. R. Belton, “The Thermodynamics of Volatilization of Chromic Oxide: Part 1: The Species CrO3 and CrO2OH”, Metallurgical Transactions, Vol. 5, 1974, p. 1811.
. G. C. Fryburg, R. A. Miller, F. J. Kohl, and C. A. Stearns, “Volatile Products in the Corrosion of Cr, Mo, Ti, and Four Superalloys Exposed to O2 Containings H2O and Gaseous NaCl”, Journal of Electrochemical Society, Vol. 124, 1977, p. 1738.
. A. Yamauchi, K. Kurokawa, and H. Takahashi, “Evaporation of Cr2O3 in Atmospheres containing H2O”, Oxidation of Metals, Vol. 59, No. 5/6, 2003, p. 517.
. T. Norby, in Selected Topics in High Temperature Chemistry: Defect Chemistry of Solids, O. Johannessen and A.G. Andersen, eds., Elsevier, Amsterdam, 1989, p. 101.
. T. Yamazaki, and M. Miyake, “Application of the Salt Film Method to Descaling Stainless Steel”, Metal Finishing, October, 1984, p. 25.
. Taylor Lyman, in Metal Handbooks, 8th Edition, Vol.2, 1969, p. 356.
. J. E. Tang, M. Halvarsson, H.Asteman, J. E. Svensson, “The Microstructure of the Base Oxide on 304L Steel”, Micron, Vol. 32, 2001, p. 799.
. R. M. Hudson, and C. J. Warning, “Factors Influencing the Pickling Rate of Hot-rolled Low-Carbon Steel in Sulfuric and Hydrochloric Acids”, Metal Finishing, June, 1980, p. 21.