| 研究生: |
盧柏誠 Lu, Bo-Cheng |
|---|---|
| 論文名稱: |
高電容離子凝膠介電層有機電晶體觸覺壓力感測
器之研究 Study of Tactile Pressure Sensors Employing Organic Transistors with High-Capacitance Ion Gel Dielectric Layers |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 離子凝膠 、壓力感測器 、有機電晶體 、電化學機制 、仿生突觸 、電雙層效應 |
| 外文關鍵詞: | Ion gel, pressure sensor, organic filed effect transistor, electrochemical mechanism, neuromorphic synapse, electric double layer effect |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計並製作一種電晶體結構有機壓力突觸感測器,其中主動層為聚三己基噻吩(poly(3-hexylthiophene), P3HT),介電層為由聚偏二氟乙烯(polyvinylidene difluoride, PVDF)與離子液體1-乙基-3-甲基咪唑鎓/雙(三氟甲基磺酰)(1-Ethyl-3-methylimidazolium/bis(trifluoromethyls-ulfonyl)imide,[EMIM][TFSI])混摻形成的高電容離子凝膠。離子凝膠兼具高離子導電性與可極化性,在外加壓力下能形成穩定的電雙層(Electric Double Layer, EDL),產生等效閘極電壓以驅動通道導通。P3HT負責載子傳輸並模擬突觸後電流(Post-synaptic Current, PSC),實現具仿生突觸的壓力感測行為。
實驗結果顯示,感測器在12.9~319.3 kPa的壓力範圍內皆能產生明顯的電流響應,靈敏度隨壓力增強而上升,最高可達約150 A/kPa,反應時間小於0.5 秒。元件可辨識不同頻率的機械刺激(0.25~10 Hz),並在單脈衝與雙脈衝刺激下展現興奮性突觸後電流與成對脈衝促進等仿生突觸行為,衰退時間約為65 ms,與生物皮膚中帕西尼氏體的快速適應性相當。穩定性測試顯示,經多次循環後元件輸出依然穩定,證明其具備良好的可重現性與結構耐受性。進一步藉由光譜分析揭示其壓力響應機制:拉曼與光致發光光譜顯示壓力使P3HT的C=C振動峰產生藍移與半高寬增加,表示分子共軛鏈被扭曲、電子耦合減弱。XPS深度分析則證實離子在壓力下重新分佈,負離子(TFSI⁻)主要停留於介面形成電荷補償,而正離子(EMIM⁺)可滲入P3HT主鏈造成暫態摻雜。PVDF的β相結構促進離子排列,進一步增強離子凝膠的極化能力並穩定EDL形成,使壓力與離子摻雜共同改變電晶體的電特性與通道導電性。
本研究證明離子凝膠介電層與有機半導體的耦合可有效將機械刺激轉換為可控的電訊號,並展現仿生突觸特性。此電晶體式有機壓力突觸感測器具備低操作電壓、高靈敏度與穩定重現性,展現出應用於電子皮膚、智慧醫療與神經感測系統的潛力。
We developed organic transistor based pressure sensors using P3HT as the active layer and a PVDF/[EMIM][TFSI] high capacitance Ion gel as the dielectric. Under applied pressure, a stable electric double layer (EDL) forms at the P3HT/Ion gel interface, modulating the channel current to mimic postsynaptic current (PSC). The devices respond to pressures of 12.9~319.3 kPa with high sensitivity (~150 μA/kPa), can detect 0.25~10 Hz stimuli, and exhibit EPSC and PPF behaviors with fast decay (~65 ms) and stable longterm performance. Spectroscopic analyses show pressure induced P3HT chain torsion and spectral blue shift, while XPS confirms interfacial charge compensation by TFSI⁻ and channel doping by EMIM⁺. The β phase of PVDF further enhances ionic polarization and EDL formation, improving channel conductance and synaptic output. These results demonstrate effective mechano electrical transduction with synaptic plasticity, low operating voltage, high sensitivity, and good reproducibility, offering potential for electronic skin, smart healthcare, and neuromorphic sensing applications.
[1]. Y. Zang, F. Zhang, D. Huang, X. Gao, C.a. Di & D. Zhu, “Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection”, Nature communications, March 2015, 6
[2]. K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, “Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor”, ACS Applied Polymer Materials, January 2020, 2
[3]. I. You, S. E. Choi, H. Hwang, S. W. Han, J. W. Kim, U. Jeong, “E-Skin Tactile Sensor Matrix Pixelated by Position-Registered Conductive Microparticles Creating Pressure-Sensitive Selectors”, Advanced Functional Materials, June 2018, 28
[4].K. Uchino, “Chapter 1 - The Development of Piezoelectric Materials and the New Perspective, Advanced Piezoelectric Materials,June 2017
[5].S. Guerin, A. M. Tofail & D. Thompson, “Organic piezoelectric materials: milestones and potential”, NPG Asia Materials, March 2019, 11
[6] T. Sharma, S. S. Je, B. Gill, X.J. Zhang, “Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application”, Sensors and Actuators A: Physical, April 2012, 177
[7].D. M. Correia, C. M. Costa, E. Lizundia, R. S. i Serra, J. A. Gómez-Tejedor, L. T. Biosca, J. M. Meseguer-Dueñas, J. L. Gomez Ribelles, S. Lanceros-Méndez, “Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends”, The Journal of Physical Chemistry C, October 2019, 123
[8]. H. Shaik, S. N. Rachith, K. J. Rudresh, A. S. Sheik, K. H. Thulasi Raman, P. Kondaiah & G. Mohan Rao, “Towards β-phase formation probability in spin coated PVDF thin films”, Journal of Polymer Research, February 2017, 24
[9]. Y. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu, L. Liu, F. Yan, “Ionic liquid–based click-ionogels”, Science Advances, August 2019, 5
[10]. S. Zhang, F. Wang, H. Peng, J. Yan, G, Pan, “Flexible Highly Sensitive Pressure Sensor Based on Ionic Liquid Gel Film”, ACS Omega, March 2018, 3
[11]. D. J. Gundlach, “Low power, high impact”, Nature materials, March 2007, 6
[12]. Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu, X. Yang, Q. Zhang, W. Zhang, S. Xu, J. Sun, Y. Meng, Q. Sun, “Piezotronic Graphene Artificial Sensory Synapse”, Advanced Functional Materials, March 2019, 29
[13]. M. Z. Li, S. T. Han, Y.Zhou, “Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors”, Advanced Intelligent Systems, July 2020, 2
[14]. J. Wang, J. Jiang, C. Zhang, M. Sun, S. Han, R. Zhang, N. Liang , D. Sun, H. Liu, “Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors”, Nano Energy, October 2020, 76
[15]. M. Z. Li, S. T. Han, Y. Zhou, “Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors”, Advanced Intelligent Systems, July 2020, 2
[16]. S. Liu, L. Wang, Z. Wang, Y. Cai, X. Feng, Y. Qin, Z. L. Wang, “Double-Channel Piezotronic Transistors for Highly Sensitive Pressure Sensing”, ACS Nano, January 2018, 12
[17]. L. Huang, S. Wang, P. Zhang, K. Zhang, Y. Li, Z. Chen, “A Flexible Pressure Sensor with Wide Detection Range Based on Capacitive-Piezoresistive Dual Mode Conversion for Human-Machine Interaction”, Advanced Materials Technologies, January 2024, 9
[18]. Z. Liu, Z. Yin, J. Wang, Q. Zheng, “Polyelectrolyte Dielectrics for Flexible Low-Voltage Organic Thin-Film Transistors in Highly Sensitive Pressure Sensing”, Advanced Functional Materials, November 2018, 29
[19]. Y. Tsuji, H. Sakai, L. Feng, X. Guo and H. Murata, “Dual-gate low-voltage organic transistor for pressure sensing”, Applied Physics Express, January 2017, 10
[20]. X. Guo, Y. Xu, S. Ogier, T. N. Ng, M. Caironi, A. Perinot, “Current Status and Opportunities of Organic Thin-Film Transistor Technologies”, IEEE Transactions on Electron Devices, May 2017, 5
[21]. Y. Xiao, Y. Duan, N. Li, L. Wu, B. Meng, F. Tan, Y. Lou, H. Wang, W. Zhang, Z. Peng, “Multilayer Double-Sided Microstructured Flexible Iontronic Pressure Sensor with a Record-wide Linear Working Range”, ACS Sensors, May 2021, 6
[22]. S. Li, J. Chu, B. Li, Y. Chang, T. Pan, “Handwriting Iontronic Pressure Sensing Origami”, ACS Applied Materials & Interfaces, November 2019, 11
[23]. K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Manda, “Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor”, ACS Applied Polymer Materials, January, 2020, 2
[24]. P. Delmas, J. Hao, L. R. Despoix, “Molecular mechanisms of mechanotransduction in mammalian sensory neurons”, Nature Reviews Neuroscience, February 2011, 12
[25]. Y. A. Nikolaev, V. V. Feketa, E. O. Anderson, E. R. Schneider and S. N. Bagriantsev, “Lamellar cells in Pacinian and Meissner corpuscles are touch sensors”, Science Advances, December 2020, 6
[26]. W. Chen, X. Yan, “Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review”, Journal of Materials Science & Technology, April 2020, 43
[27]. J. Tolvanen, J. Hannu, H. Jantunen, “Hybrid Foam Pressure Sensor Utilizing Piezoresistive and Capacitive Sensing Mechanisms”, IEEE Sensors Journal, June 2017, 17
[28]. S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J. Y. Park, “Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition”, ACS Applied Materials & Interfaces, April 2020, 12
[29]. J. H. Lee, H. J.Yoon, T. Y. Kim, M. K. Gupta, J. H. Lee, W. Seung, H. Ryu, S.W. Kim, “Micropatterned P(VDF-TrFE) Film-Based Piezoelectric Nanogenerators for Highly Sensitive Self-Powered Pressure Sensors”, Advanced Functional Materials, April 2015, 25
[30]. Y. Wang, W. Luo, Y. Wen, J. Zhao, C. Chen, Z. Chen, X. S. Zhang, “Wearable, washable piezoresistive pressure sensor based on polyurethane sponge coated with composite CNT/CB/TPU”, Materials Today Physics, March 2025, 52
[31]. G. Ding, S. T. Han b, A.L. Roy, C. C. Kuo, Y. Zhou, “Triboelectric nanogenerator for neuromorphic electronics”, Energy Reviews, March 2023, 2