簡易檢索 / 詳目顯示

研究生: 盧柏誠
Lu, Bo-Cheng
論文名稱: 高電容離子凝膠介電層有機電晶體觸覺壓力感測 器之研究
Study of Tactile Pressure Sensors Employing Organic Transistors with High-Capacitance Ion Gel Dielectric Layers
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 99
中文關鍵詞: 離子凝膠壓力感測器有機電晶體電化學機制仿生突觸電雙層效應
外文關鍵詞: Ion gel, pressure sensor, organic filed effect transistor, electrochemical mechanism, neuromorphic synapse, electric double layer effect
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計並製作一種電晶體結構有機壓力突觸感測器,其中主動層為聚三己基噻吩(poly(3-hexylthiophene), P3HT),介電層為由聚偏二氟乙烯(polyvinylidene difluoride, PVDF)與離子液體1-乙基-3-甲基咪唑鎓/雙(三氟甲基磺酰)(1-Ethyl-3-methylimidazolium/bis(trifluoromethyls-ulfonyl)imide,[EMIM][TFSI])混摻形成的高電容離子凝膠。離子凝膠兼具高離子導電性與可極化性,在外加壓力下能形成穩定的電雙層(Electric Double Layer, EDL),產生等效閘極電壓以驅動通道導通。P3HT負責載子傳輸並模擬突觸後電流(Post-synaptic Current, PSC),實現具仿生突觸的壓力感測行為。
    實驗結果顯示,感測器在12.9~319.3 kPa的壓力範圍內皆能產生明顯的電流響應,靈敏度隨壓力增強而上升,最高可達約150 A/kPa,反應時間小於0.5 秒。元件可辨識不同頻率的機械刺激(0.25~10 Hz),並在單脈衝與雙脈衝刺激下展現興奮性突觸後電流與成對脈衝促進等仿生突觸行為,衰退時間約為65 ms,與生物皮膚中帕西尼氏體的快速適應性相當。穩定性測試顯示,經多次循環後元件輸出依然穩定,證明其具備良好的可重現性與結構耐受性。進一步藉由光譜分析揭示其壓力響應機制:拉曼與光致發光光譜顯示壓力使P3HT的C=C振動峰產生藍移與半高寬增加,表示分子共軛鏈被扭曲、電子耦合減弱。XPS深度分析則證實離子在壓力下重新分佈,負離子(TFSI⁻)主要停留於介面形成電荷補償,而正離子(EMIM⁺)可滲入P3HT主鏈造成暫態摻雜。PVDF的β相結構促進離子排列,進一步增強離子凝膠的極化能力並穩定EDL形成,使壓力與離子摻雜共同改變電晶體的電特性與通道導電性。
    本研究證明離子凝膠介電層與有機半導體的耦合可有效將機械刺激轉換為可控的電訊號,並展現仿生突觸特性。此電晶體式有機壓力突觸感測器具備低操作電壓、高靈敏度與穩定重現性,展現出應用於電子皮膚、智慧醫療與神經感測系統的潛力。

    We developed organic transistor based pressure sensors using P3HT as the active layer and a PVDF/[EMIM][TFSI] high capacitance Ion gel as the dielectric. Under applied pressure, a stable electric double layer (EDL) forms at the P3HT/Ion gel interface, modulating the channel current to mimic postsynaptic current (PSC). The devices respond to pressures of 12.9~319.3 kPa with high sensitivity (~150 μA/kPa), can detect 0.25~10 Hz stimuli, and exhibit EPSC and PPF behaviors with fast decay (~65 ms) and stable longterm performance. Spectroscopic analyses show pressure induced P3HT chain torsion and spectral blue shift, while XPS confirms interfacial charge compensation by TFSI⁻ and channel doping by EMIM⁺. The β phase of PVDF further enhances ionic polarization and EDL formation, improving channel conductance and synaptic output. These results demonstrate effective mechano electrical transduction with synaptic plasticity, low operating voltage, high sensitivity, and good reproducibility, offering potential for electronic skin, smart healthcare, and neuromorphic sensing applications.

    中文摘要1 Extended Abstract3 致謝14 目錄15 表目錄19 圖目錄20 第一章 簡介23 1.1壓力感測器23 1.1.1壓力感測器的發展23 1.1.2壓電材料的介紹24 1.1.3離子凝膠的優勢25 1.2人工感覺突觸的發展26 1.3場效電晶體[13][14]27 1.4研究目的與大綱29 第二章實驗設計與方法32 2.1實驗材料與實驗製程32 2.1.1實驗材料32 2.2感測器的製程35 2.2.1基板清洗35 2.2.2高分子修飾層與旋轉塗佈機36 2.2.3物理氣相沉積儀蒸鍍汲極與源極37 2.2.4有機主動層37 2.2.5製備離子凝膠層與貼附37 2.2.6製備導電高分子上閘極與貼附38 2.3元件電特性與薄膜分析儀器介紹39 2.3.1電晶體參數與感測器性能量測39 2.3.2介電層與主動層之電容分析40 2.3.3表面形貌分析40 2.3.4材料表面元素組成與縱深分析41 2.3.5分子結構與特性分析41 第三章有機薄膜電晶體與感測器概論43 3.1有機薄膜電晶體基本架造43 3.2有機半導體載子傳輸機制45 3.3有機薄膜電晶體之操作原理及基本公式46 3.4有機薄膜電晶體之電特性參數48 3.5壓力感測器感測機制50 第四章Ion gel壓力感測器性能之研究52 4.1感測器之架構與電性分析52 4.1.1不同感測架構比較響應52 4.1.2更換壓電介電層探討VRO來源55 4.1.3壓力對元件電性影響分析58 4.2感測器的感測性能61 4.2.1感測器對分級壓力輸出響應曲線分析61 4.2.2感測器對變頻壓力輸出響應曲線分析64 4.2.3感測器的耐久力和保持力65 4.3感測器之仿生突觸分析67 4.3.1感測器於電訊號刺激下的仿生突觸行為67 4.3.2感測器於外力刺激下的仿生突觸行為69 4.4薄膜分析76 4.4.1P3HT薄膜受壓前後的PL光譜76 4.4.2P3HT & Ion gel薄膜受壓前後的Raman光譜77 4.4.3P3HT薄膜受壓前後的XPS能譜83 4.4.4感測器受壓前後的C-V Curve86 4.4.5P3HT薄膜受壓前後的UV-Visible吸收光譜88 第五章結論與未來展望90 5.1結論90 5.2未來展望92 參考文獻93

    [1]. Y. Zang, F. Zhang, D. Huang, X. Gao, C.a. Di & D. Zhu, “Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection”, Nature communications, March 2015, 6
    [2]. K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, “Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor”, ACS Applied Polymer Materials, January 2020, 2
    [3]. I. You, S. E. Choi, H. Hwang, S. W. Han, J. W. Kim, U. Jeong, “E-Skin Tactile Sensor Matrix Pixelated by Position-Registered Conductive Microparticles Creating Pressure-Sensitive Selectors”, Advanced Functional Materials, June 2018, 28
    [4].K. Uchino, “Chapter 1 - The Development of Piezoelectric Materials and the New Perspective, Advanced Piezoelectric Materials,June 2017
    [5].S. Guerin, A. M. Tofail & D. Thompson, “Organic piezoelectric materials: milestones and potential”, NPG Asia Materials, March 2019, 11
    [6] T. Sharma, S. S. Je, B. Gill, X.J. Zhang, “Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application”, Sensors and Actuators A: Physical, April 2012, 177
    [7].D. M. Correia, C. M. Costa, E. Lizundia, R. S. i Serra, J. A. Gómez-Tejedor, L. T. Biosca, J. M. Meseguer-Dueñas, J. L. Gomez Ribelles, S. Lanceros-Méndez, “Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends”, The Journal of Physical Chemistry C, October 2019, 123
    [8]. H. Shaik, S. N. Rachith, K. J. Rudresh, A. S. Sheik, K. H. Thulasi Raman, P. Kondaiah & G. Mohan Rao, “Towards β-phase formation probability in spin coated PVDF thin films”, Journal of Polymer Research, February 2017, 24
    [9]. Y. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu, L. Liu, F. Yan, “Ionic liquid–based click-ionogels”, Science Advances, August 2019, 5
    [10]. S. Zhang, F. Wang, H. Peng, J. Yan, G, Pan, “Flexible Highly Sensitive Pressure Sensor Based on Ionic Liquid Gel Film”, ACS Omega, March 2018, 3
    [11]. D. J. Gundlach, “Low power, high impact”, Nature materials, March 2007, 6
    [12]. Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu, X. Yang, Q. Zhang, W. Zhang, S. Xu, J. Sun, Y. Meng, Q. Sun, “Piezotronic Graphene Artificial Sensory Synapse”, Advanced Functional Materials, March 2019, 29
    [13]. M. Z. Li, S. T. Han, Y.Zhou, “Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors”, Advanced Intelligent Systems, July 2020, 2
    [14]. J. Wang, J. Jiang, C. Zhang, M. Sun, S. Han, R. Zhang, N. Liang , D. Sun, H. Liu, “Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors”, Nano Energy, October 2020, 76
    [15]. M. Z. Li, S. T. Han, Y. Zhou, “Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors”, Advanced Intelligent Systems, July 2020, 2
    [16]. S. Liu, L. Wang, Z. Wang, Y. Cai, X. Feng, Y. Qin, Z. L. Wang, “Double-Channel Piezotronic Transistors for Highly Sensitive Pressure Sensing”, ACS Nano, January 2018, 12
    [17]. L. Huang, S. Wang, P. Zhang, K. Zhang, Y. Li, Z. Chen, “A Flexible Pressure Sensor with Wide Detection Range Based on Capacitive-Piezoresistive Dual Mode Conversion for Human-Machine Interaction”, Advanced Materials Technologies, January 2024, 9
    [18]. Z. Liu, Z. Yin, J. Wang, Q. Zheng, “Polyelectrolyte Dielectrics for Flexible Low-Voltage Organic Thin-Film Transistors in Highly Sensitive Pressure Sensing”, Advanced Functional Materials, November 2018, 29
    [19]. Y. Tsuji, H. Sakai, L. Feng, X. Guo and H. Murata, “Dual-gate low-voltage organic transistor for pressure sensing”, Applied Physics Express, January 2017, 10
    [20]. X. Guo, Y. Xu, S. Ogier, T. N. Ng, M. Caironi, A. Perinot, “Current Status and Opportunities of Organic Thin-Film Transistor Technologies”, IEEE Transactions on Electron Devices, May 2017, 5
    [21]. Y. Xiao, Y. Duan, N. Li, L. Wu, B. Meng, F. Tan, Y. Lou, H. Wang, W. Zhang, Z. Peng, “Multilayer Double-Sided Microstructured Flexible Iontronic Pressure Sensor with a Record-wide Linear Working Range”, ACS Sensors, May 2021, 6
    [22]. S. Li, J. Chu, B. Li, Y. Chang, T. Pan, “Handwriting Iontronic Pressure Sensing Origami”, ACS Applied Materials & Interfaces, November 2019, 11
    [23]. K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Manda, “Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor”, ACS Applied Polymer Materials, January, 2020, 2
    [24]. P. Delmas, J. Hao, L. R. Despoix, “Molecular mechanisms of mechanotransduction in mammalian sensory neurons”, Nature Reviews Neuroscience, February 2011, 12
    [25]. Y. A. Nikolaev, V. V. Feketa, E. O. Anderson, E. R. Schneider and S. N. Bagriantsev, “Lamellar cells in Pacinian and Meissner corpuscles are touch sensors”, Science Advances, December 2020, 6
    [26]. W. Chen, X. Yan, “Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review”, Journal of Materials Science & Technology, April 2020, 43
    [27]. J. Tolvanen, J. Hannu, H. Jantunen, “Hybrid Foam Pressure Sensor Utilizing Piezoresistive and Capacitive Sensing Mechanisms”, IEEE Sensors Journal, June 2017, 17
    [28]. S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J. Y. Park, “Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition”, ACS Applied Materials & Interfaces, April 2020, 12
    [29]. J. H. Lee, H. J.Yoon, T. Y. Kim, M. K. Gupta, J. H. Lee, W. Seung, H. Ryu, S.W. Kim, “Micropatterned P(VDF-TrFE) Film-Based Piezoelectric Nanogenerators for Highly Sensitive Self-Powered Pressure Sensors”, Advanced Functional Materials, April 2015, 25
    [30]. Y. Wang, W. Luo, Y. Wen, J. Zhao, C. Chen, Z. Chen, X. S. Zhang, “Wearable, washable piezoresistive pressure sensor based on polyurethane sponge coated with composite CNT/CB/TPU”, Materials Today Physics, March 2025, 52
    [31]. G. Ding, S. T. Han b, A.L. Roy, C. C. Kuo, Y. Zhou, “Triboelectric nanogenerator for neuromorphic electronics”, Energy Reviews, March 2023, 2

    QR CODE