簡易檢索 / 詳目顯示

研究生: 魏健宇
Wei, Jian-Yu
論文名稱: 使用系集卡門濾波器整合水頭與岩相資料於水力傳導係數推估之研究
Integrating Hydraulic Head and Facies Data for Estimating Hydraulic Conductivity via Ensemble Kalman Filter
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 69
中文關鍵詞: 系集卡門濾波器資料融合地下水模型逆向模式
外文關鍵詞: Ensemble Kalman Filter, Data assimilation, Groundwater model, Inverse model
相關次數: 點閱:72下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水力傳導係數(K)在地下水資源管理,和地下水汙染整治工作中扮演著重要的角色,然而K在空間上具有強烈的異質性。在資源有限的情況下,藉由抽水試驗及微水試驗只能得到少數的K值採樣。使用少量K值得到的推估K場,無法忠實呈現K場在空間上的異質性,導致地下水模擬結果具無法排除的不確定。而我們可以藉由豐富的鑽探岩相資料,做為K值大小的判示指標。雖然相對於抽水試驗和微水試驗這些資料所代表的K值具有較大的不確定性,但岩相資料具有量多且取得成本相對低廉的優勢。本研究以系集卡門濾波器單整合軟性資料以降低模擬之不確定性。研究中於二維地下水侷限含水層中進行數值試驗,使用水位資料推估K場做為對照組,並設計三個系列的案例測試系集卡門濾波器對K場推估的成效。在第一個系列的案例中,使用水位資料和不同精度及準度的K值觀測資料,測試具不確定性的K值觀測資料對K場推估的成效。在第二個系列的案例中,以第一個系列的其中案例為基礎,測試固定整合K值的次數,對K場推估的影響。在第三個系列的案例中,使用水位和岩相資料,測試岩相資料對K場推估的成效。這三個系列的案例使用場址中所有的網格的水位及水力傳導係數之平均誤差平方和當評估誤差指標。研究結果顯示(1)相對於單獨使用觀測水位進行K場推估,整合觀測水位與一定程度精度和準度的觀測K值,會有更好的K場推估結果。(2)並非整合精度和準度較低的觀測K值就一定會有較差的K場推估結果,準度較低的K值資料可以藉由給予適當的精度,提升K場推估結果。(3)在系集卡門濾波器中K值觀測值做為靜態資料,整合次數的多寡對於結果影響極小。(4)在成本有限的情況下,可以利用成本較低廉且具有不確定性的軟性資料,幫助我們提升K場推估結果(5)使用系集卡門濾波器結合水位與岩相資料,考有效改善K場的推估結果的改善。

    Hydraulic conductivity (K) is an important parameter for groundwater resource management and subsurface contaminant remediation. Natural subsurface environment is inherently heterogeneous with hydrogeological parameters varying spatially. Only, the sparse K measurements can be obtained with pumping test and slug test due to high sampling cost. It is difficult to construct the heterogeneous K field with sparse K measurements and, thus, there is inherent uncertainty in groundwater modeling result. On the other hand, there are abundant facies measurements available. The facies measurements are relatively cheaper than direct K measurements obtained by pumping test and slug test and can serve as index of the magnitude of K with uncertainty. In this research, ensemble Kalman filter (EnKF) are explored for the reduction of modeling uncertainty. The ensemble Kalman filter is a data assimilation algorithm to integrate facies, K measurements and hydraulic head measurements for K estimate. A two-dimensional heterogenous confined aquifer is constructed for numerical modeling. Three series of cases are designed to evaluate the efficiency of lnK field estimations, using ensemble Kalman filter. In the first series, the sensitivity of accuracy and precision for lnK measurements in EnKF is tested. In the second series, the sensitivity of assimilation schedule for lnK measurements in EnKF is tested. In the third series, the feasibility of facies in EnKF is tested. The root mean square error (RMSE) of lnK evaluate the performance of EnKF. The results show: (1) Integrating h and lnK measurements to estimate lnK field through EnKF outperforms the integration of the h measurements only (2) The quality of the lnK measurement controls the performance of lnK field estimates. The more accurate and precise the lnK measurement is, the better the performance is. By given the proper precision of inaccurate lnK measurements, the performance can be significantly improved. (3) Assimilation schedule for lnK measurements makes little difference in the result of EnKF. It is proper to assimilate the lnK measurements just in the first time step only. (4) The state data such as hydraulic head can improve the performance of lnK estimates through EnKF. (5) Faces measurement such as soft data is feasible to improve the lnK estimates through EnKF.

    Abstract I 摘要 III 誌謝 IV Contents VI List of Tables VIII List of Figures IX Notation XI Chapter 1. Introduction 1 1.1 Research approach 7 Chapter 2. Methodology 9 2.1 Groundwater model 9 2.2 Kalman filter 13 2.3 Ensemble Kalman filter 16 Chapter 3. Model Construction 19 3.1 Synthetic reference field 19 3.2 Flow modeling 21 3.3 Sampling from reference field 25 3.3.1 Hydraulic head measurement 25 3.3.2 Nature log hydraulic conductivity measurement 29 3.3.3 Facies measurement 31 3.4 Case designs 34 Chapter 4. Results and Discussions 37 4.1 Sensitivity of lnK measurement to EnKF 37 4.1.1 Effects of accuracy and precision of K 37 4.1.2 Effect of schedule to use lnK measurement on EnKF 57 4.2 Integrating hydraulic head and facies for updating hydraulic conductivity via ensemble Kalman filter 58 Chapter 5. Conclusions and Suggestions 63 5.1 Conclusions 63 5.2 Suggestions 63 Reference 65

    Bear, J., 1979. Hydraulics of Groundwater, McGraw-Hill, New York.

    Boggs, J. M., Young, S. C., Beard, L. M., Gelhar, L. W., Rehfeldt, K. R., Adams, E. R. 1992. Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description. Water Resources Research. 28 (12), 3281-3291.

    Chang, H., Liao, Q., & Zhang, D. 2017. Surrogate model based iterative ensemble smoother for subsurface flow data assimilation. Advances in Water Resources, 100, 96–108.

    Chen, Y., Zhang, D. 2006. Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources. 29(8), 1107-1122.

    Domenico, P. A. and Schwartz., F. W. 1990. Physical and Chemical Hydrogeology, John Wiley & Sons, New York, 824 p.

    Erwan, G., Chouteau, M., Marcotte, D. 2001. Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data. Journal of Applied Geophysics. 47, 135-152.

    Evensen, G. 1994. Sequential Data Assimilation With a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics. Journal of Geophysical Research. 99, 10143–10162.

    Fogg, G. E. and Zhang, Y. 2016. Debates—Stochastic subsurface hydrology from theory to practice: A geologic perspective. Water Resources Research. 52, 9235-9245.

    Gelhar, L.W. 1993. Stochastic Subsurface Hydrology. Prentice-Hall, New York.

    Gillijns, S., Barrero Mendoza, O., Chandrasekar, J., De Moor, B. L. R., Bernstein, D. S. and Ridley, A. 2006. What Is the Ensemble Kalman Filter and How Well Does it Work? Proceedings of the 2006 American Control Conference. 14-16.

    Gomez-Hernandez, J. 1993. Joint sequential simulation of multiGaussian fields. Geostatistics Troia. 92, 85-94.
    Gharamti, M., Hoteit, I., & Valstar, J. 2013. Dual states estimation of a subsurface flow-transport coupled model using ensemble kalman filtering. Advances inWater Resources, 60, 75–88.

    Gómez-Hernández, J. J., H. J. W. M, Sahuquillo A. 2003. Stochastic conditional inverse modeling of subsurface mass transport: a brief review and the self-calibrating method. Stoch Environ Res Risk Assess. 17(5), 319–28.

    Gómez-Hernández, J. J., Sahuquillo, A., Capilla, J. E. 1997. Gómez-Hernández JJ, Sahuquillo A, Capilla JE. Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data: I. Theory. Journal of Hydrology. 203(1-4), 162-174.

    Gunckel, T. L., 1963. Orbit Determination Using Kalman's Method. Navigation. 10(3), 272-291.

    Hess, K. M., Wolf, S. H. and Celia, M. A. 1989. Spatial variability of hydraulic conductivity in a sand and gravel aquifer, cape cod, measurements. Water-resources Investigations. 88, 1983-1944.

    Hu, L.Y. 2000. Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math Geol. 32(1), 87–108.

    Hendricks, F. H., Kinzelbach, W. 2008. Real-time groundwater flow modeling with the ensemble kalman filter: Joint estimation of states and parameters and the filter inbreeding problem.Water Resources Research, 44(9), W09408.

    Huang, C., Hu, B. X., Li, X., &Ye, M. 2009.Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source. Stochastic Environmental Research and Risk Assessment, 23(8), 1155.

    Killy, R. W. D., Moltyaner, G. L. 1988. Twin Lake Tracer Tests: Longitudinal dispersion. Water Resources Research. 24 (10), 1613-1627.

    Kitanidis, P. 1996. On the geostatistical approach to the inverse problem. Advnce in Water Resour. 19(6), 333–42.

    Kitanidis, P. K. 2015. Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport, Water Resources Research. 51 (8), 5888–5904.

    Li, B. and Yeh, J. 1999. Cokriging estimation of the conductivity field under variably saturated flow conditions. Water resource research. 35(12), 3663-3674.

    Li, L., Puzel, R., Davis, A. 2018. Data assimilation in groundwater modelling: ensemble Kalman filter versus ensemble smoothers. Hydrological Processes. 32, 2020-2029.

    Li, N. And Ren, L. 2010. Application and assessment of a multiscale data integration method to saturated hydraulic conductivity in soil. Water Resources Research. 46(9).

    Liang, J., Zeng, G. M., Shen, S., Guo, S. L., Li, X. D., Tan, Y., Li, Z. W. and Li, J. B. 2015. Bayesian approach to quantify parameter uncertainty and impacts on predictive flow and mass transport in heterogeneous aquifer. International Journal of Environmental Science and Technology. 12, pages919–928.

    Nan, T., & Wu, J. 2011. Groundwater parameter estimation using the ensemble Kalman filter with localization. Hydrogeology Journal, 19(3), 547–561.

    Panzeri, M., Riva, M., Guadagnini,A. and Neuman, S.P. 2013. Data assimilation and parameter estimation via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater flow. Water Resources Research. 49 (3), 1334–1344.

    Stibinger, J. 2014. Examples of determining the hydraulic conductivity of soils: theory and applications of selected basic methods. J. E. Purkyně University in Ústí n. Labem, Faculty of the Environment.

    Sudicky, E. A. 1986, A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. 22 (13).

    Tartakovsky, D. M. 2013. Assessment and management of risk in subsurface hydrology: A review and perspective. Advances in WaterResources. 51, 247–260.

    Vemuri, V., and Karplus, W. J. 1969. Identification of nonlinear parameters of groundwater basin by hybird computation. Water Resources Research. 5(1), 172.0
    .
    Xia, C. A., Luo, X., Hu, B. X., Riva, M., Guadagnini, A. 2020. Data assimilation with multiple types of observation boreholes via ensemble Kalman filter embedded within stochastic moment equations. Hydrology and Earth System Sciences.

    Zhou, H., Gomez-Hernandez, J. J., Franssen, H.-J. H., & Li, L. 2011. Anapproach to handling non-Gaussianity of parameters and state variables in ensemble kalman filtering. Advances in Water Resources, 34(7), 844–864.

    Zhou, H., Gómez-Hernández, J.J. 2014. Inverse methods in hydrogeology: Evolution and recent trends. Advances in Water Resources. 63, 22–37.

    下載圖示 校內:2024-03-15公開
    校外:2024-03-15公開
    QR CODE