| 研究生: |
林季尚 Lin, Chi-Shang |
|---|---|
| 論文名稱: |
熱鎢絲化學氣相低溫沉積奈米矽晶薄膜及薄膜電晶體的研究 A study of low temperature growing nanocrystalline silicon films and thin film transistor using hot-wire chemical vapor deposition |
| 指導教授: |
方炎坤
Fan, Yen-Kun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 薄膜電晶體 、熱燈絲 、奈米晶矽 |
| 外文關鍵詞: | TFT, nc-Si, Hot Filament |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非晶矽薄膜電晶體(Amorphous Silicon Thin Film Transistor,a-Si TFT)製程簡單但是因為電子移動率不佳導致元件電性不良;低溫多晶矽薄膜電晶體(Polycrystalline Silicon Thin Film Transistor, poly-Si TFT)雖然有優越的特性但是製程較繁瑣且成本較高。而奈米晶矽薄膜 (Nanocrystalline Silicon, nc-Si)擁有比非晶矽薄膜電晶體佳的電性並且製程比低溫多晶矽薄膜簡單,故成長奈米晶矽薄膜是一項非常有前瞻性的技術。
在各種沉積奈米晶矽薄膜的技術裡熱絲化學氣相沉積 (Hot-Wire Chemical Vapor Deposition, HWCVD)因為擁有高沉積速率與低成長溫度因此特別受到重視。在本論文中我們用HWCVD在玻璃基板上以成長溫度2500C、成長速率3.4nm/s下沉積奈米晶粒薄膜,並以場發射掃瞄式電子顯微鏡(FESEM)、原子力顯微鏡(AFM)、X光繞射儀(XRD)、拉曼光譜儀(Raman Spectroscopy)、霍爾量測儀(Hall measurement)等儀器來分析各種參數如鎢絲溫度、氫氣濃度、基板溫度對薄膜結晶性的影響。最後我們成功以HWCVD研製出奈米晶矽薄膜電晶體,其場效電子移動率約為3.4cm2/V•S比非晶矽薄膜電晶體優越。
Recently amorphous thin film transistor (a-Si),low temperature poly-Si TFT ,and nanocrystalline TFT(nc-Si TFT) have been studies widthly for flat panel display. However the fabrication process of amorphous silicon thin film transistor (a-Si TFT) is simple but it’s performances are low for electric mobility. Although low temperature polycrystalline silicon thin film transistor(poly-Si TFT)shows higher mobility than a-Si TFT, but it also possecess the high fabricating cost and complicated process. Only nanocrystalline silicon TFT(nc-Si TFT) shows better electric characteristics than a-Si TFT and easier fabricating process than poly-Si TFT.
On the other hand, hot wire chemical vapor deposition (HWCVD) has been developed as a attractive technique for deposition of thin film nanocrystalline silicon films with low temperature and high deposition rate. In this thesis we present experimental results on HWCVD deposited nc-Si film on glass between 2500C at growth rate of 3.4nm/s.The influence of the deposition conditions such as temperature of filament, temperature of substrate, and hydrogen dilution on the material crystallinity were analyzed through FESEM, AFM, XRD, Raman Spectroscopy and Hall measurement. Additionly we have successfully fabrication nc-Si TFT with better field effect mobility about 3cm2/V•S than a-Si TFT.
Reference
[1] 液晶顯示器技術手冊, 經濟部技術處發行,台灣電子材料與元件協會出版
[2] 翁得期, “化學氣相沉積法低溫成長奈米多晶矽薄膜及氧化矽奈米線之研究”, 國立成功大學化工所博士論文.
[3] H.Wiesmann, A.K. Gosh, T. McMahon, M Strongin, J. “a-Si : H produced by high-temperature thermal decomposition of silane” Appl. Phys. 50(1979)3752
[4] H. Matsumura and H. Tachibana: “Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2” Appl. Phys. Lett. 47 (1985) 833
[5] KF Feenstra, REI Schropp, and WF Van der Weg, J. “Deposition of amorphous silicon films by hot-wire chemical vapor deposition.” Appl. Phy., 85,. 6843 (1999).
[6] D. Beeman, R. Tsu, and M. F. Toorpe, Phys. Rev. B. 32(1985) 874.
[7] R.E.I. Schoropp, K. F. Feenstra. E. C. Molenbroek, H. Meiling, and J. K. Rath, ”Device-quality polycrystalline and amorphous silicon films by hot-wire chemical vapor deposition”, Phil. Mag. B, vol.76, pp. 309-21,1997.
[8] Y. He, C. Ying, G. Cheng, L. Wang, X. Liu, and G. Y. Hu, J. Appl. Phys. 75(1994) 797.
[9] D. Beeman, R. Tsu, and M. F. Toorpe, Phys. Rev. B. 32(1985) 874.
[10]B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley, Reading, MA. (1978) 284
[11] Horbach C., Beyer W., Wagner H., J. Non-Cryst. Solids 137-138 661 (1991)
[12]P. Roca i Cabarrocas, S. Hamma, “Microcrystalline silicon growth on a-Si:H: effects of hydrogen”, Thin Solid Films 337 (1999) 23-26
[13] F. Feenstra, P.F.A. Alkemade, E. Algra, R. E. I. Schropp, W. F. van der Weg, "Effect of post-deposition treatments on the hydrogenation of hot-wire deposited amorphous silicon films", Progress in Photovoltaics: Research and Applications, vol. 7, 1999, pp. 341-351.
[14] H. L. Hsiao, H.L.H., A. B. Yang, L. W. Chen, and T. R. Yew, “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”. Applied Surface Science, 1999. 142(1): p. 316-321.
[15]A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, ”Electrical properties of amorphous silicon transistors and MIS-devices:comparative study of top nitride and bottom nitride configurations”, J. Electrochem. Soc., vol. 140, pp. 3679-83, 1993.
[16] P. Roca i Cabarrocas, A. Fontcuberta i Morral, B. Kalache, “Microcrystalline Silicon Thin Films Grown by PECVD. Growth Mechanisms and Grain Size Control”, S. Kasouit, Solis State Phenom. 93 (2003) 257.
[17]D. Hong, "Process Development and Modeling of Thin-Film Transistors," Master's Thesis, Oregon State University, 2005.
[18]Dosev, Dosi Konstantinov, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.” in PhD thesis. Barcelona: Universitat Politècnica de Catalunya (UPC)
[19] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal ,Semiconductor device modeling for VLSI, 1 ed. New jersey:Prentice Hall, Inc., 1993
[20] M. S. Shur, H. C. Slade, M. D. Jacunski, A. A. Owusu, and T. Ytterdal,”SPICE models for amorphous silicon and polysilicon thin film transistors”, Journal of the Electrochemical Society, vol. 144, pp. 2833-9, 1997.
校內:2105-07-24公開