簡易檢索 / 詳目顯示

研究生: 陳雅萍
Chen, Ya-Ping
論文名稱: 以極光激酶作為急性淋巴性白血病的標的
Targeting Aurora Kinases in Acute Lymphoblastic Leukemia
指導教授: 陳彩雲
Chen, Tsai-Yun
洪良宜
Hung, Liang-Yi
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 138
中文關鍵詞: 急性淋巴性白血病極光激酶極光激酶抑制劑MLL-AF4CDKN1A
外文關鍵詞: ALL, Aurora kinases, Aurora kinase inhibitors, MLL-AF4, CDKN1A
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然急性淋巴性白血病的治療成果已經獲得大幅改善,但是藥物抗藥性與疾病復發仍舊是急性淋巴性白血病需解決的難題。因此,目前仍有必要開發新的治療標的來克服這些困境。過去研究顯示極光激酶可能是某些癌症之治療標的。本研究主要探討極光激酶是否可以作為急性淋巴性白血病的治療標的。西方墨點法、逆轉錄聚合酶鏈式反應、免疫組織染色結果顯示,急性淋巴性白血病的細胞株與病患檢體具有高表現的極光激酶以及與臨床預後有關。極光激酶抑制劑VE-465 與VX-680在九株急性淋巴性白血病細胞株展現不同的藥物敏感性。急性淋巴性白血病對極光激酶抑制劑之藥物敏感性與極光激酶的表現量、磷酸化以及活化物無關。對極光激酶抑制劑藥物敏感之細胞株在藥物處理濃度於10–40 nM展現細胞凋亡以及表現極光激酶A被抑制之表型,然而對極光激酶抑制劑具有高抗藥性之細胞株在藥物處理濃度高於10 μM之下仍無法造成有效的抑制血癌細胞生長則表現極光激酶B被抑制之表型。進一步的研究顯示帶有MLL-AF4基因重組之細胞株與異種移植之老鼠模式顯示帶有MLL-AF4基因重組之急性淋巴性白血病對極光激酶抑制劑A (MLN8237) 具有相當好之抗癌效果,但是對極光激酶抑制劑B (ZM447439)則反應較差。進一步之分子機轉探討中發現CDKN1A在調控急性淋巴性白血病對極光激酶抑制劑之藥物反應是重要的分子之ㄧ,並且TP53的狀態並不會影響CDKN1A在調控急性淋巴性白血病對極光激酶抑制劑之抗癌效果。來自病人之MLL-AF4陽性之急性淋巴性白血病細胞具有高表現之CDKN1A且對極光激酶抑制劑有較佳之藥物敏感性。因此,本研究結果顯示CDKN1A可以做為生物指標以決定急性淋巴性白血病對極光激酶抑制劑之藥物反應,特別是在MLL-AF4陽性之急性淋巴性白血病之病患。

    Despite improved treatment outcome in acute lymphoblastic leukemia (ALL), drug resistance and disease recurrence remain major obstacles in ALL. Thus, there is an urgent need to identify new targets for therapy. Several studies showed that Aurora kinases were potential therapeutic targets in some cancers. This study was aimed to investigate whether Aurora kinases would be the therapeutic targets in ALL. Aurora kinases were overexpressed in ALL cell lines and patient samples by Western blot, real-time quantitative PCR and immunohistochemistry and their expression pattern was associated with clinical outcomes. Pan-Aurora kinase inhibitors VE-465 and VX-680 exhibited different drug susceptibilities in nine ALL cell lines. Drug susceptibility of ALL cells was not correlated with the expression status of Aurora kinases, their phosphorylation or activators. Cells sensitive to Aurora kinase inhibitors underwent apoptosis at an IC50 around 10–40 nM and displayed a phenotype of Aurora-A inhibition, whereas cells resistant to Aurora kinase inhibitors (with an IC50 more than 10 μM) accumulated polyploidy, which resulted from Aurora-B inhibition. Furthermore, drug-sensitive MLL-AF4-positive cell lines and xenograft mice also had good anti-leukemia responses to specific Aurora-A inhibitors (MLN8237) but responded poorly to specific Aurora-B inhibitors (ZM447439). The further molecular mechanism demonstrated that CDKN1A played a critical role in governing the drug responsiveness of ALL in a TP53-independent manner. Primary MLL-AF4-positve ALL cells exhibiting high CDKN1A expression were sensitive to pan-Aurora kinase inhibitors. Therefore, our study suggested CDKN1A might serve as a potential biomarker in determining the drug responsiveness of Aurora kinase inhibitors in ALL, particularly in MLL-AF4-positive patients.

    Abstract in Chinese I Abstract II Acknowledgment III Table of Content IV List of Figures VIII List of Tables XI List of Supplement XII List of Appendices XIII Abbreviations XIV Chapter 1: Introduction 1 1. Leukemia 1 1-1. Acute lymphoblastic leukemia (ALL) 2 1-2. Philadelphia chromosome-positive (Ph+) leukemia 3 1-3. MLL-AF4-positive ALL 3 2. Cell cycle regulation as a therapeutic target 4 2-1. Cell cycle 4 2-2. Aurora kinases 5 2-3. Aurora kinases in cancer and leukemia 7 2-4. Aurora kinase inhibitors 7 3. Thesis aims 9 4. Research significance 10 Chapter 2: Materials and methods 11 I. Materials 11 1. Chemical compound 11 2. Primers used in this study 15 3. Gene knockdown 16 4. Antibodies used in this study 16 II. Methods 17 1. Microarray analysis 17 2. Preparation of cell lysates and Western blot analysis 17 3. Immunohistochemical staining 18 4. Cell viability and proliferation assay 19 5. Xenograft model 19 6. Flow cytometry analysis 19 7. Cell culture and transfection 20 8. RQ-PCR and semi-quantitative RT-PCR 21 9. Patients samples 21 10. Sequencing of TP53 PCR products 22 11. Statistical analysis 23 Chapter 3: Results 24 Part I. The expression patterns of Aurora kinases in leukemia 24 1. Aurora kinases were differently expressed in Ph+ leukemia (CML and ALL) cell lines and patient samples 24 2. Aurora kinases were overexpressed in ALL cell lines and samples 25 3. The expression of Aurora-B was associated with higher WBC counts and poor remission rate; Aurora-A in the nucleus was associated with unfavorable cytogenetics; the expression pattern of Aurora kinases would affect the clinical outcome 26 Part II. The treatment efficacy of Aurora kinase inhibitors in leukemia 28 1. Ph+ leukemia “CML and ALL cells” exhibited different drug susceptibility to Aurora kinase inhibitors 28 2. Aurora kinase inhibitors exhibited different drug susceptibility in ALL cell lines 28 3. Aurora kinase inhibitors effectively inhibited the nocodazole-induced phosphorylation of Aurora kinases in drug-resistant and drug-sensitive ALL cells, not correlated with the IC50 of Aurora kinase inhibitors 29 4. Drug-sensitive cell RS4;11 exhibited Aurora-A inhibition phenotypes but drug-resistant cell RPMI-8402 displayed Aurora-B inhibition phenotypes 29 5. Distinct expressions of apoptosis were observed in drug-sensitive cell RS4;11 and drug-resistant cell RPMI-8402 after exposure to Aurora kinase inhibitors 30 6. Aurora-A inhibitors expressed prominent anti-leukemia effects in RS4;11 but not Aurora-B inhibitors 30 7. Aurora-A inhibitors effectively inhibited the proliferation of MLL-AF4-positive ALL in human leukemia xenograft mouse Models 31 Part-III. The molecular mechanism regulated the diverse drug susceptibility of Aurora kinase inhibitors in ALL 32 1. Aurora kinase inhibitors exhibited different drug susceptibility in ALL cell lines, not correlated with the expression level, phosphorylation status or activation status of Aurora kinases and the expression of MDR-1 32 2. Aurora kinase inhibitors resulted in 165 gene changes in MLL-AF4-positive RS4;11, one of which was CDKN1A 32 3. Drug-sensitive ALL cells had higher baseline expressions of CDKN1A compared to drug-resistant ALL cells 33 4. Aurora kinase inhibitors resulted in up-regulation of CDKN1A in drug-sensitive RS4;11 but no change of CDKN1A in drug-resistant RPMI-8402 33 5. Knockdown of CDKN1A abrogated the anti-leukemic effect of Aurora kinase inhibitors in drug-sensitive ALL cells “RS4;11” 34 6. Overexpression of CDKN1A enhanced the anti-leukemic effect of Aurora kinase inhibitors in drug-resistant ALL cells 35 7. There existed a TP53-indpendent CDKN1A signaling pathway regulating the drug susceptibility of Aurora kinase inhibitors 35 8. Primary de novo MLL-AF4-positive ALL cells exhibited high expressions of Aurora kinases and CDKN1A and were sensitive to Aurora kinase inhibitors 36 Chapter 4: Discussion 38 1. There is a link between CDKN1A and the drug responsiveness of Aurora kinase inhibitors in ALL, especially in MLL-AF4-positive ALL 38 2. Aurora kinases have prognostic roles in ALL 40 3. Different the various types of MLL-AF4 fusion transcripts do not have different drug responses to Aurora kinase inhibitors 41 4. TP53-indepdent CDKN1A signaling pathway plays an important role in mediating the drug responsiveness of Aurora kinase inhibitors in ALL 41 5. Aurora-A is an important target for MLL-AF4-positive ALL 42 6. There may be existence of other factors that regulate the expression of CDKN1A after exposure to Aurora kinases inhibitors 44 Chapter 5: Future Directions 47 Chapter 6: References 48 Chapter 7: Figures 65 Chapter 8: Tables 98 Chapter 9: Supplement 109 Chapter 10: Appendices 114 Chapter 11: Publications 123 Chapter 12: Curriculum vitae 126

    1. Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. The New England journal of medicine 2004;350:1535-48.
    2. Swerdlow SH CE, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO lassification of tumours of haematopoietic and lymphoid tissues. 4th ed. IARC Press. 2008.
    3. Spiers AS. Clinical manifestations of chronic granulocytic leukemia. Seminars in oncology 1995;22:380-95.
    4. Brown CM, Larsen SR, Iland HJ, Joshua DE, Gibson J. Leukaemias into the 21st century: part 1: the acute leukaemias. Internal medicine journal 2012;42:1179-86.
    5. Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2012;30:1663-9.
    6. Pui CH, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. The New England journal of medicine 2009;360:2730-41.
    7. Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2011;29:532-43.
    8. Pieters R, Schrappe M, De Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007;370:240-50.
    9. Bassan R. Evolving strategies for the management of high-risk adult acute lymphoblastic leukemia. Haematologica 2005;90:1299.
    10. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet 2008;371:1030-43.
    11. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. The New England journal of medicine 2006;354:166-78.
    12. Hongo T, Okada S, Inoue N, et al. Two groups of Philadelphia chromosome-positive childhood acute lymphoblastic leukemia classified by pretreatment multidrug sensitivity or resistance in in vitro testing. International journal of hematology 2002;76:251-9.
    13. Coustan-Smith E, Gajjar A, Hijiya N, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 2004;18:499-504.
    14. Stam RW, den Boer ML, Meijerink JP, et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood 2003;101:1270-6.
    15. Holleman A, Cheok MH, den Boer ML, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. The New England journal of medicine 2004;351:533-42.
    16. Rudkin CT, Hungerford DA, Nowell PC. DNA Contents of Chromosome Ph1 and Chromosome 21 in Human Chronic Granulocytic Leukemia. Science 1964;144:1229-31.
    17. Collaborative study of karyotypes in childhood acute lymphoblastic leukemias. Groupe Francais de Cytogenetique Hematologique. Leukemia 1993;7:10-9.
    18. Secker-Walker LM, Prentice HG, Durrant J, Richards S, Hall E, Harrison G. Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. MRC Adult Leukaemia Working Party. British journal of haematology 1997;96:601-10.
    19. de Klein A, van Kessel AG, Grosveld G, et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1982;300:765-7.
    20. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nature reviews Cancer 2005;5:172-83.
    21. O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. The New England journal of medicine 2003;348:994-1004.
    22. Peggs K, Mackinnon S. Imatinib mesylate--the new gold standard for treatment of chronic myeloid leukemia. The New England journal of medicine 2003;348:1048-50.
    23. Druker BJ. Imatinib as a paradigm of targeted therapies. Advances in cancer research 2004;91:1-30.
    24. Alvarnas JC, Brown PA, Aoun P, et al. Acute lymphoblastic leukemia. Journal of the National Comprehensive Cancer Network : JNCCN 2012;10:858-914.
    25. Quintas-Cardama A, Kantarjian H, Cortes J. Flying under the radar: the new wave of BCR-ABL inhibitors. Nature reviews Drug discovery 2007;6:834-48.
    26. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nature reviews Cancer 2007;7:345-56.
    27. Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992;71:691-700.
    28. Gu Y, Nakamura T, Alder H, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992;71:701-8.
    29. Pui CH, Gaynon PS, Boyett JM, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002;359:1909-15.
    30. Pui CH, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003;17:700-6.
    31. Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nature genetics 1992;2:113-8.
    32. Hilden JM, Dinndorf PA, Meerbaum SO, et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children's Oncology Group. Blood 2006;108:441-51.
    33. van der Linden MH, Valsecchi MG, De Lorenzo P, et al. Outcome of congenital acute lymphoblastic leukemia treated on the Interfant-99 protocol. Blood 2009;114:3764-8.
    34. Meyer C, Kowarz E, Hofmann J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009;23:1490-9.
    35. van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999;13:1901-28.
    36. Schultz KR, Pullen DJ, Sather HN, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood 2007;109:926-35.
    37. Moorman AV, Harrison CJ, Buck GA, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 2007;109:3189-97.
    38. Mancini M, Scappaticci D, Cimino G, et al. A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood 2005;105:3434-41.
    39. Gleissner B, Goekbuget N, Rieder H, et al. CD10- pre-B acute lymphoblastic leukemia (ALL) is a distinct high-risk subgroup of adult ALL associated with a high frequency of MLL aberrations: results of the German Multicenter Trials for Adult ALL (GMALL). Blood 2005;106:4054-6.
    40. DO M. The Cell Cycle: Principles of Control. New Science Press Limited 2007:297.
    41. Howard A PS. Synthesis of deoxyribonucleic acid in normal and irrradiated cells and its relation to chromosome breakage. Heredity 1952;6(Suppl.):261-73.
    42. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science 1989;246:629-34.
    43. Malumbres M. Physiological relevance of cell cycle kinases. Physiological reviews 2011;91:973-1007.
    44. Katayama H, Brinkley WR, Sen S. The Aurora kinases: role in cell transformation and tumorigenesis. Cancer metastasis reviews 2003;22:451-64.
    45. Glover DM, Leibowitz MH, McLean DA, Parry H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 1995;81:95-105.
    46. Carmena M, Earnshaw WC. The cellular geography of aurora kinases. Nature reviews Molecular cell biology 2003;4:842-54.
    47. Pitts TM, Davis SL, Eckhardt SG, Bradshaw-Pierce EL. Targeting nuclear kinases in cancer: development of cell cycle kinase inhibitors. Pharmacology & therapeutics 2014;142:258-69.
    48. Bruyere C, Meijer L. Targeting cyclin-dependent kinases in anti-neoplastic therapy. Current opinion in cell biology 2013;25:772-9.
    49. Sherbenou DW, Druker BJ. Applying the discovery of the Philadelphia chromosome. The Journal of clinical investigation 2007;117:2067-74.
    50. Goldenson B CJ. The aurora kinases in cell cycle and leukemia. Oncogene 2014 Mar 17 Epub ahead of print 2014.
    51. Cheung CH, Coumar MS, Hsieh HP, Chang JY. Aurora kinase inhibitors in preclinical and clinical testing. Expert opinion on investigational drugs 2009;18:379-98.
    52. Bischoff JR, Anderson L, Zhu Y, et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. The EMBO journal 1998;17:3052-65.
    53. Kimura M, Kotani S, Hattori T, et al. Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1. The Journal of biological chemistry 1997;272:13766-71.
    54. Zhou H, Kuang J, Zhong L, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature genetics 1998;20:189-93.
    55. Terada Y. Role of chromosomal passenger complex in chromosome segregation and cytokinesis. Cell structure and function 2001;26:653-7.
    56. Adams RR, Wheatley SP, Gouldsworthy AM, et al. INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Current biology : CB 2000;10:1075-8.
    57. Vagnarelli P, Earnshaw WC. Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma 2004;113:211-22.
    58. Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America 2004;101:6062-7.
    59. Walter AO, Seghezzi W, Korver W, Sheung J, Lees E. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 2000;19:4906-16.
    60. Yasui Y, Urano T, Kawajiri A, et al. Autophosphorylation of a newly identified site of Aurora-B is indispensable for cytokinesis. The Journal of biological chemistry 2004;279:12997-3003.
    61. Littlepage LE, Wu H, Andresson T, Deanehan JK, Amundadottir LT, Ruderman JV. Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora-A. Proceedings of the National Academy of Sciences of the United States of America 2002;99:15440-5.
    62. Ferrari S, Marin O, Pagano MA, et al. Aurora-A site specificity: a study with synthetic peptide substrates. The Biochemical journal 2005;390:293-302.
    63. Haydon CE, Eyers PA, Aveline-Wolf LD, Resing KA, Maller JL, Ahn NG. Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Molecular & cellular proteomics : MCP 2003;2:1055-67.
    64. Vader G, Medema RH, Lens SM. The chromosomal passenger complex: guiding Aurora-B through mitosis. The Journal of cell biology 2006;173:833-7.
    65. Sasai K, Katayama H, Stenoien DL, et al. Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell motility and the cytoskeleton 2004;59:249-63.
    66. Naruganahalli KS, Lakshmanan M, Dastidar SG, Ray A. Therapeutic potential of Aurora kinase inhibitors in cancer. Current opinion in investigational drugs 2006;7:1044-51.
    67. Mountzios G, Terpos E, Dimopoulos MA. Aurora kinases as targets for cancer therapy. Cancer treatment reviews 2008;34:175-82.
    68. Farag SS. The potential role of Aurora kinase inhibitors in haematological malignancies. British journal of haematology 2011;155:561-79.
    69. Kimura M, Matsuda Y, Yoshioka T, Okano Y. Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. The Journal of biological chemistry 1999;274:7334-40.
    70. Kimura M, Matsuda Y, Yoshioka T, Sumi N, Okano Y. Identification and characterization of STK12/Aik2: a human gene related to aurora of Drosophila and yeast IPL1. Cytogenetics and cell genetics 1998;82:147-52.
    71. Tsou JH, Chang KC, Chang-Liao PY, et al. Aberrantly expressed AURKC enhances the transformation and tumourigenicity of epithelial cells. The Journal of pathology 2011;225:243-54.
    72. Khan J, Ezan F, Cremet JY, et al. Overexpression of active Aurora-C kinase results in cell transformation and tumour formation. PloS one 2011;6:e26512.
    73. Ikezoe T, Yang J, Nishioka C, et al. A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Molecular cancer therapeutics 2007;6:1851-7.
    74. de Paula Careta F, Gobessi S, Panepucci RA, et al. The Aurora A and B kinases are up-regulated in bone marrow-derived chronic lymphocytic leukemia cells and represent potential therapeutic targets. Haematologica 2012;97:1246-54.
    75. Yang J, Ikezoe T, Nishioka C, Nobumoto A, Udaka K, Yokoyama A. CD34(+)/CD38(-) acute myelogenous leukemia cells aberrantly express Aurora kinase A. International journal of cancer Journal international du cancer 2013;133:2706-19.
    76. Ye D, Garcia-Manero G, Kantarjian HM, et al. Analysis of Aurora kinase A expression in CD34(+) blast cells isolated from patients with myelodysplastic syndromes and acute myeloid leukemia. Journal of hematopathology 2009;2:2-8.
    77. Lucena-Araujo AR, de Oliveira FM, Leite-Cueva SD, dos Santos GA, Falcao RP, Rego EM. High expression of AURKA and AURKB is associated with unfavorable cytogenetic abnormalities and high white blood cell count in patients with acute myeloid leukemia. Leukemia research 2011;35:260-4.
    78. Moore AS, Blagg J, Linardopoulos S, Pearson AD. Aurora kinase inhibitors: novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias. Leukemia 2010;24:671-8.
    79. Hruz T, Laule O, Szabo G, et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Advances in bioinformatics 2008;2008:420747.
    80. Mehra R, Serebriiskii IG, Burtness B, Astsaturov I, Golemis EA. Aurora kinases in head and neck cancer. The lancet oncology 2013;14:e425-35.
    81. Yen CC, Yeh CN, Cheng CT, et al. Integrating bioinformatics and clinicopathological research of gastrointestinal stromal tumors: identification of aurora kinase A as a poor risk marker. Annals of surgical oncology 2012;19:3491-9.
    82. Kurai M, Shiozawa T, Shih HC, et al. Expression of Aurora kinases A and B in normal, hyperplastic, and malignant human endometrium: Aurora B as a predictor for poor prognosis in endometrial carcinoma. Human pathology 2005;36:1281-8.
    83. Bolanos-Garcia VM. Aurora kinases. The international journal of biochemistry & cell biology 2005;37:1572-7.
    84. Kimmins S, Crosio C, Kotaja N, et al. Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Molecular endocrinology 2007;21:726-39.
    85. Garuti L, Roberti M, Bottegoni G. Small molecule aurora kinases inhibitors. Current medicinal chemistry 2009;16:1949-63.
    86. Hauf S, Cole RW, LaTerra S, et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. The Journal of cell biology 2003;161:281-94.
    87. Ditchfield C, Johnson VL, Tighe A, et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. The Journal of cell biology 2003;161:267-80.
    88. Cohen RB, Jones SF, Aggarwal C, et al. A phase I dose-escalation study of danusertib (PHA-739358) administered as a 24-hour infusion with and without granulocyte colony-stimulating factor in a 14-day cycle in patients with advanced solid tumors. Clinical cancer research : an official journal of the American Association for Cancer Research 2009;15:6694-701.
    89. Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 2007;109:500-2.
    90. Lin ZZ, Hsu HC, Hsu CH, et al. The Aurora kinase inhibitor VE-465 has anticancer effects in pre-clinical studies of human hepatocellular carcinoma. Journal of hepatology 2009;50:518-27.
    91. Cheung CH, Coumar MS, Chang JY, Hsieh HP. Aurora kinase inhibitor patents and agents in clinical testing: an update (2009-10). Expert opinion on therapeutic patents 2011;21:857-84.
    92. Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya PS, Lepsik M, Hajduch M. Aurora kinase inhibitors: progress towards the clinic. Investigational new drugs 2012;30:2411-32.
    93. Dees EC, Cohen RB, von Mehren M, et al. Phase I study of aurora A kinase inhibitor MLN8237 in advanced solid tumors: safety, pharmacokinetics, pharmacodynamics, and bioavailability of two oral formulations. Clinical cancer research : an official journal of the American Association for Cancer Research 2012;18:4775-84.
    94. Dees EC, Infante JR, Cohen RB, et al. Phase 1 study of MLN8054, a selective inhibitor of Aurora A kinase in patients with advanced solid tumors. Cancer chemotherapy and pharmacology 2011;67:945-54.
    95. Girdler F, Gascoigne KE, Eyers PA, et al. Validating Aurora B as an anti-cancer drug target. Journal of cell science 2006;119:3664-75.
    96. Carpinelli P, Moll J. Aurora kinase inhibitors: identification and preclinical validation of their biomarkers. Expert opinion on therapeutic targets 2008;12:69-80.
    97. Hilton JF, Shapiro GI. Aurora kinase inhibition as an anticancer strategy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2014;32:57-9.
    98. Hartsink-Segers SA, Zwaan CM, Exalto C, et al. Aurora kinases in childhood acute leukemia: the promise of aurora B as therapeutic target. Leukemia 2013;27:560-8.
    99. Harrington EA, Bebbington D, Moore J, et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature medicine 2004;10:262-7.
    100. Giles FJ, Swords RT, Nagler A, et al. MK-0457, an Aurora kinase and BCR-ABL inhibitor, is active in patients with BCR-ABL T315I leukemia. Leukemia 2013;27:113-7.
    101. Young MA, Shah NP, Chao LH, et al. Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. Cancer research 2006;66:1007-14.
    102. Giet R, Glover DM. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. The Journal of cell biology 2001;152:669-82.
    103. Guo J, Anderson MG, Tapang P, et al. Identification of genes that confer tumor cell resistance to the aurora B kinase inhibitor, AZD1152. The pharmacogenomics journal 2009;9:90-102.
    104. Payton M, Bush TL, Chung G, et al. Preclinical evaluation of AMG 900, a novel potent and highly selective pan-aurora kinase inhibitor with activity in taxane-resistant tumor cell lines. Cancer research 2010;70:9846-54.
    105. Planas-Silva MD, Weinberg RA. Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution. Molecular and cellular biology 1997;17:4059-69.
    106. Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM. Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 2000;97:9042-6.
    107. Giannakakou P, Robey R, Fojo T, Blagosklonny MV. Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene 2001;20:3806-13.
    108. Schmidt M, Fan Z. Protection against chemotherapy-induced cytotoxicity by cyclin-dependent kinase inhibitors (CKI) in CKI-responsive cells compared with CKI-unresponsive cells. Oncogene 2001;20:6164-71.
    109. Abukhdeir AM, Park BH. P21 and p27: roles in carcinogenesis and drug resistance. Expert reviews in molecular medicine 2008;10:e19.
    110. Chowdhury A, Chowdhury S, Tsai MY. A novel Aurora kinase A inhibitor MK-8745 predicts TPX2 as a therapeutic biomarker in non-Hodgkin lymphoma cell lines. Leukemia & lymphoma 2012;53:462-71.
    111. Kalous O, Conklin D, Desai AJ, et al. AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53. Breast cancer research and treatment 2013;141:397-408.
    112. Marxer M, Ma HT, Man WY, Poon RY. p53 deficiency enhances mitotic arrest and slippage induced by pharmacological inhibition of Aurora kinases. Oncogene 2013.
    113. Donato NJ, Fang D, Sun H, Giannola D, Peterson LF, Talpaz M. Targets and effectors of the cellular response to aurora kinase inhibitor MK-0457 (VX-680) in imatinib sensitive and resistant chronic myelogenous leukemia. Biochemical pharmacology 2010;79:688-97.
    114. Li M, Jung A, Ganswindt U, et al. Aurora kinase inhibitor ZM447439 induces apoptosis via mitochondrial pathways. Biochemical pharmacology 2010;79:122-9.
    115. den Hollander J, Rimpi S, Doherty JR, et al. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 2010;116:1498-505.
    116. Cheung CH, Lin WH, Hsu JT, et al. BPR1K653, a novel Aurora kinase inhibitor, exhibits potent anti-proliferative activity in MDR1 (P-gp170)-mediated multidrug-resistant cancer cells. PloS one 2011;6:e23485.
    117. Fei F, Lim M, Schmidhuber S, Moll J, Groffen J, Heisterkamp N. Treatment of human pre-B acute lymphoblastic leukemia with the Aurora kinase inhibitor PHA-739358 (Danusertib). Molecular cancer 2012;11:42.
    118. Emanuel S, Rugg CA, Gruninger RH, et al. The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer research 2005;65:9038-46.
    119. Grundy M, Seedhouse C, Shang S, Richardson J, Russell N, Pallis M. The FLT3 internal tandem duplication mutation is a secondary target of the aurora B kinase inhibitor AZD1152-HQPA in acute myelogenous leukemia cells. Molecular cancer therapeutics 2010;9:661-72.
    120. Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature 2007;446:153-8.
    121. Girdler F, Sessa F, Patercoli S, Villa F, Musacchio A, Taylor S. Molecular basis of drug resistance in aurora kinases. Chemistry & biology 2008;15:552-62.
    122. Liu S, Bishop WR, Liu M. Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 2003;6:183-95.
    123. Zhang W, Kornblau SM, Kobayashi T, Gambel A, Claxton D, Deisseroth AB. High levels of constitutive WAF1/Cip1 protein are associated with chemoresistance in acute myelogenous leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 1995;1:1051-7.
    124. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proceedings of the National Academy of Sciences of the United States of America 2004;101:1241-6.
    125. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nature reviews Cancer 2009;9:400-14.
    126. Lin ZZ, Jeng YM, Hu FC, et al. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC. BMC cancer 2010;10:461.
    127. Vischioni B, Oudejans JJ, Vos W, Rodriguez JA, Giaccone G. Frequent overexpression of aurora B kinase, a novel drug target, in non-small cell lung carcinoma patients. Molecular cancer therapeutics 2006;5:2905-13.
    128. Yang G, Chang B, Yang F, et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clinical cancer research : an official journal of the American Association for Cancer Research 2010;16:3171-81.
    129. Tatsuka M, Sato S, Kanda A, et al. Oncogenic role of nuclear accumulated Aurora-A. Molecular carcinogenesis 2009;48:810-20.
    130. Katayama H, Sasai K, Kawai H, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nature genetics 2004;36:55-62.
    131. Liu Q, Kaneko S, Yang L, et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. The Journal of biological chemistry 2004;279:52175-82.
    132. Jeng YM, Peng SY, Lin CY, Hsu HC. Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2004;10:2065-71.
    133. Yang J, Ikezoe T, Nishioka C, et al. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 2007;110:2034-40.
    134. Maris JM, Morton CL, Gorlick R, et al. Initial testing of the aurora kinase A inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatric blood & cancer 2010;55:26-34.
    135. Gorgun G, Calabrese E, Hideshima T, et al. A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood 2010;115:5202-13.
    136. Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nature reviews Cancer 2004;4:927-36.
    137. Wen Q, Goldenson B, Silver SJ, et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell 2012;150:575-89.
    138. Friedberg JW, Mahadevan D, Cebula E, et al. Phase II study of alisertib, a selective Aurora A kinase inhibitor, in relapsed and refractory aggressive B- and T-cell non-Hodgkin lymphomas. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2014;32:44-50.
    139. Do TV, Xiao F, Bickel LE, et al. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene 2014;33:539-49.
    140. Manfredi MG, Ecsedy JA, Chakravarty A, et al. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clinical cancer research : an official journal of the American Association for Cancer Research 2011;17:7614-24.
    141. Agirre X, Novo FJ, Calasanz MJ, et al. TP53 is frequently altered by methylation, mutation, and/or deletion in acute lymphoblastic leukaemia. Molecular carcinogenesis 2003;38:201-8.
    142. Ikezoe T, Yang J, Nishioka C, Yokoyama A. p53 is critical for the Aurora B kinase inhibitor-mediated apoptosis in acute myelogenous leukemia cells. International journal of hematology 2010;91:69-77.
    143. Kojima K, Konopleva M, Tsao T, Nakakuma H, Andreeff M. Concomitant inhibition of Mdm2-p53 interaction and Aurora kinases activates the p53-dependent postmitotic checkpoints and synergistically induces p53-mediated mitochondrial apoptosis along with reduced endoreduplication in acute myelogenous leukemia. Blood 2008;112:2886-95.
    144. Wiederschain D, Kawai H, Gu J, Shilatifard A, Yuan ZM. Molecular basis of p53 functional inactivation by the leukemic protein MLL-ELL. Molecular and cellular biology 2003;23:4230-46.
    145. Wiederschain D, Kawai H, Shilatifard A, Yuan ZM. Multiple mixed lineage leukemia (MLL) fusion proteins suppress p53-mediated response to DNA damage. The Journal of biological chemistry 2005;280:24315-21.
    146. Cui J, Gong Z, Shen HM. The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Biochimica et biophysica acta 2013;1836:15-26.
    147. Kuroda J, Shimura Y, Yamamoto-Sugitani M, Sasaki N, Taniwaki M. Multifaceted mechanisms for cell survival and drug targeting in chronic myelogenous leukemia. Current cancer drug targets 2013;13:69-79.
    148. Zou Z, Yuan Z, Zhang Q, et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy 2012;8:1798-810.
    149. Hrabakova R, Kollareddy M, Tyleckova J, et al. Cancer cell resistance to aurora kinase inhibitors: identification of novel targets for cancer therapy. Journal of proteome research 2013;12:455-69.
    150. Ivanovska I, Ball AS, Diaz RL, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Molecular and cellular biology 2008;28:2167-74.
    151. Warfel NA, El-Deiry WS. p21WAF1 and tumourigenesis: 20 years after. Current opinion in oncology 2013;25:52-8.
    152. White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2009;15:5308-16.
    153. Altman BJ, Jacobs SR, Mason EF, et al. Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis. Oncogene 2011;30:1855-67.
    154. Bhutia SK, Kegelman TP, Das SK, et al. Astrocyte elevated gene-1 induces protective autophagy. Proceedings of the National Academy of Sciences of the United States of America 2010;107:22243-8.
    155. Carew JS, Nawrocki ST, Kahue CN, et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 2007;110:313-22.
    156. Pan Y, Gao Y, Chen L, et al. Targeting autophagy augments in vitro and in vivo antimyeloma activity of DNA-damaging chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research 2011;17:3248-58.
    157. Rosenfeldt MT, Ryan KM. The multiple roles of autophagy in cancer. Carcinogenesis 2011;32:955-63.
    158. Frankel LB, Wen J, Lees M, et al. microRNA-101 is a potent inhibitor of autophagy. The EMBO journal 2011;30:4628-41.
    159. Yu Y, Cao L, Yang L, Kang R, Lotze M, Tang D. microRNA 30A promotes autophagy in response to cancer therapy. Autophagy 2012;8:853-5.
    160. Yu Y, Yang L, Zhao M, et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 2012;26:1752-60.
    161. Fu LL, Wen X, Bao JK, Liu B. MicroRNA-modulated autophagic signaling networks in cancer. The international journal of biochemistry & cell biology 2012;44:733-6.
    162. Pan B, Yi J, Song H. MicroRNA-mediated autophagic signaling networks and cancer chemoresistance. Cancer biotherapy & radiopharmaceuticals 2013;28:573-8.
    163. Kovaleva V, Mora R, Park YJ, et al. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer research 2012;72:1763-72.
    164. Ruvolo VR, Karanjeet KB, Schuster TF, et al. Role for PKC delta in Fenretinide-Mediated Apoptosis in Lymphoid Leukemia Cells. Journal of signal transduction 2010;2010:584657.
    165. Kitagawa M, Aonuma M, Lee SH, Fukutake S, McCormick F. E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 2008;27:5303-14.
    166. Findley HW, Gu L, Yeager AM, Zhou M. Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood 1997;89:2986-93.
    167. Duthu A, Debuire B, Romano J, et al. p53 mutations in Raji cells: characterization and localization relative to other Burkitt's lymphomas. Oncogene 1992;7:2161-7.
    168. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer research 1991;51:6304-11.
    169. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proceedings of the National Academy of Sciences of the United States of America 1992;89:7491-5.

    無法下載圖示 校內:2019-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE