簡易檢索 / 詳目顯示

研究生: 許有鈞
Hsu, Yu-Chun
論文名稱: 雷射鑽孔之煙塵效應對能量吸收與孔形之研究
Study of the effects of the laser induced plume on the energy absorption and hole-shaping in laser drilling
指導教授: 林震銘
Lin, Jehnming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 145
中文關鍵詞: 蒸氣煙塵能量吸收雷射鑽孔
外文關鍵詞: energy absorption, vapor plume, laser drilling
相關次數: 點閱:135下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討雷射鑽孔製程中雷射加熱基材所產生之蒸氣煙塵,對雷射光源能量造成衰減之效應,與對鑽孔孔洞形貌之影響。在雷射鑽孔製程中,基材被雷射光源加熱後,材料會被汽化並噴出基材表面而形成蒸氣煙塵;從基材表面噴出之蒸氣煙塵會逐漸冷卻並凝結成核成煙塵粒子,散佈在基材表面上方的煙塵粒子會對雷射光源產生散射效應,造成最後作用在基材表面上的雷射能量衰減。
    本研究建構一物理模型,模擬奈秒(ns)等級之雷射脈衝對基材的加熱與溫升、產生之蒸氣煙塵的動態變化、粒子凝結成核與最終對雷射光源造成的散射效應等物理現象。數值計算結果指出,增加雷射功率密度,會縮短雷射光源對基材表面的有效作用時間,但會增強雷射對基材表面的材料移除率與總移除量。
    實驗上利用脈衝時間為毫秒(ms)等級之Nd:YAG脈衝雷射,對石墨靶材進行鑽孔實驗,並觀察雷射光源強度對時間之變化。實驗觀察結果顯示,延長雷射的脈衝時間雖然會增加雷射脈衝的單發能量,但雷射的平均能量強度卻是呈下降趨勢。
    模擬結果與實驗結果顯示,模擬之平均移除率,與實驗之平均鑽孔率,皆會隨著雷射能量密度的增加而下降,兩者趨勢具有一致性。

    The effects of the laser induced plume on the energy absorption and hole-shaping in laser drilling have been investigated numerically and experimentally in this study. In the laser drilling process, the substrate material is heated and vaporized by laser beam and the vaporized matters eject from the substrate surface and form the vapor plume. The plume rises from the substrate surface and nucleates as particles after the vapor temperature is decreased. Furthermore the laser beam will be scattered by the plume particles and the absorption of the laser beam on the substrate will decrease.

    In the numerical simulation, the physical models include target heating, plume diffusion, particles nucleation and light scattering. The numerical results show that the increase in laser power density will decrease with the effective drilling time but increase the material removal rate in laser drilling.

    In the experiment, the graphite target is drilled by a Nd:YAG pulsed laser with various pulse conditions. Furthermore the beam pulse was observed, the results show that the increase of pulse duration time will increase energy of single pulse but decrease the average laser intensity for the present laser system.

    Both the numerical and experimental results show that the averaged material remove rate and averaged drilling rate decreases with the increase of the energy density of laser pulse.

    中文摘要…………………………………………………………… I 英文摘要…………………………………………………………… II 致謝………………………………………………………………… III 目錄………………………………………………………………… IV 表目錄……………………………………………………………… VIII 圖目錄……………………………………………………………… X 符號說明…………………………………………………………… XVI 第一章 緒論……………………………………………………… 1 1-1 研究目的……………………………………………………… 1 1-2 文獻回顧……………………………………………………… 5 1-2.1 雷射鑽孔…………………………………………………… 5 1-2.2 靶材煙塵…………………………………………………… 8 1-2.3 粒子成核…………………………………………………… 10 1-3 本文架構……………………………………………………… 11 第二章 製程原理簡介…………………………………………… 12 2-1 靶材溫升與熱傳……………………………………………… 16 2-1.1 一維暫態熱傳導方程式…………………………………… 16 2-1.2 能量條件…………………………………………………… 16 2-1.3 邊界條件…………………………………………………… 17 2-2 蒸氣生成與傳播……………………………………………… 18 2-2.1 質量守衡…………………………………………………… 18 2-2.2 動量守衡…………………………………………………… 19 2-2.3 能量守衡…………………………………………………… 19 2-2.4 邊界條件…………………………………………………… 21 2-3 粒子成核與凝結……………………………………………… 24 2-3.1 成核理論…………………………………………………… 24 2-3.2 傳輸方程式………………………………………………… 28 2-4 能量散射與衰減……………………………………………… 30 2-4.1 比爾-藍伯定律…………………………………………… 30 2-4.2 散射理論…………………………………………………… 31 2-5 計算流程說明………………………………………………… 33 第三章 數值計算結果………………………………………………35 3-1 模擬參數說明………………………………………………… 35 3-2 計算模擬結果………………………………………………… 37 3-2.1 靶材內部之溫度…………………………………………… 37 3-2.2 靶材蒸氣分子之數量密度………………………………… 40 3-2.3 環境氣體分子之數量密度………………………………… 43 3-2.4 蒸氣氣體混合物之數量密度與質量密度………………… 46 3-2.5 蒸氣氣體混合物之速度與溫度…………………………… 50 3-2.6 蒸氣氣體混合物之壓力與內能…………………………… 56 3-3 煙塵粒子對雷射光源之散射與能量遮蔽…………………… 59 3-4 靶材表面之移除率與總移除量……………………………… 63 3-5 數值模擬結果與實驗文獻之比較…………………………… 67 3-6 結果與討論…………………………………………………… 71 第四章 雷射鑽孔實驗…………………………………………… 73 4-1 實驗設備配置與參數設定…………………………………… 73 4-2 雷射鑽孔實驗結果…………………………………………… 75 4-2.1 雷射脈衝發數1至9發之鑽孔結果………………………… 75 4-2.2 雷射脈衝發數10至80發之鑽孔結果……………………… 84 4-2.3 不同雷射脈衝作用時間之單發鑽孔結果………………… 91 4-3 雷射光強度觀測實驗………………………………………… 98 4-4 實驗結果與文獻之比較……………………………………… 102 4-5 實驗結果與模擬結果之比較………………………………… 103 4-6 結果與討論…………………………………………………… 105 第五章 綜合討論與建議………………………………………… 106 5-1 綜合討論……………………………………………………… 106 5-2 相關建議與未來發展………………………………………… 109 參考文獻…………………………………………………………… 110 附錄A 數值模擬之離散式………………………………………… 114 附錄B 散射係數之化簡…………………………………………… 118 附錄C 成核相關之數值模擬結果………………………………… 120 附錄D 煙塵觀察實驗……………………………………………… 129 附錄E 考慮散射效應後靶材表面蒸氣密度、速度與壓力之變化 131 附錄F 數值模擬程式碼…………………………………………… 133 自述………………………………………………………………… 145

    [1] Steen W. M., “Laser material processing”, Springer, London, p 219, 1998.
    [2] Yeo C.Y., Tam S.C., Jana S., Lau Michael W.S., “Technical review of the laser drilling of aerospace materials”, Journal of Materials Processing Technology, v 42, n 1, p 15-49, 1993.
    [3] Zhang Y., Faghri A., “Vaporization, melting and heat conduction in the laser drilling process”, International Journal of Heat and Mass Transfer, v 42, n 10, p 1775-1790, 1999.
    [4] Nakazawa H., “Principles of precision engineering”, Oxford University Press, 1994.
    [5] Zeng D., Latham W. P., Kar A., “Two-dimensional model for melting and vaporization during optical trepanning”, Journal of Applied Physics, v 97, n 10, p 1-7, 2005.
    [6] McNally C. A., Folkes J., Pashby I. R., “Laser drilling of cooling holes in aeroengines: State of the art and future challenges”, Materials Science and Technology, v 20, n 7, p 805-813, 2004.
    [7] Jacobs P. F., “Precision laser trepanning”, Industrial Laser Solutions, 2005. http://www.industrial-lasers.com/display_article/242918/39/ARCHI/none/Feat/Precision-laser-trepanning
    [8] Angell J., Ho W., Schaeffer R. D., “Effects of taper on drilling and cutting with a pulsed laser”, Proceedings of SPIE - The International Society for Optical Engineering, v 2993, p 150-161, 1997.
    [9] Nolte S., Momma C., Kamlage G., Ostendorf A., Fallnich C., Von Alvensleben F., Welling H., “Polarization effects in ultrashort-pulse laser drilling”, Applied Physics A: Materials Science and Processing, v 68, n 5, p 563-567, 1999.
    [10] Low D. K. Y., Li L., “An investigation into melt flow dynamics during repetitive pulsed laser drilling of transparent media”, Optics and Laser Technology, v 33, n 7, p 515-522, 2001.
    [11] Ghoreishi M., Low D.K.Y, Li L., “Comparative statistical analysis of hole taper and circularity in laser percussion drilling”, International Journal of Machine Tools and Manufacture, v 42, n 9, p 985-995, 2002.
    [12] Bandyopadhyay S., Gokhale H., Sundar J. K. S., Sundararajan G., Joshi S.V., “A statistical approach to determine process parameter impact in Nd:YAG laser drilling of IN718 and Ti-6Al-4V sheets”, Optics and Lasers in Engineering, v 43, n 2, p 163-182, 2005.
    [13] Gou D., Cai K., Yang J., Huang Y., “Spatter-free laser drilling of alumina ceramics based on gelcasting technology”, Journal of the European Ceramic Society, v 23, n 8, p 1263-1267, 2003.
    [14] Voisey K. T., Clyne T. W., “Laser drilling of cooling holes through plasma sprayed thermal barrier coatings”, Surface and Coatings Technology, v 176, n 3, p 296-306, 2003.
    [15] Sezer H. K., Li L., Schmidt M., Pinkerton A. J., Anderson B., Williams P., “Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys”, International Journal of Machine Tools and Manufacture, v 46, n 15, p 1972-1982, 2006.
    [16] Yang H., Shi J., “Study of laser precise drilling technology of ceramic material”, Proceedings of SPIE - The International Society for Optical Engineering, v 5629, p 404-412, 2005.
    [17] Sommer S., Dausinger F., Berger P., Hugel H., “Aerodynamic window for high precision laser drilling”, Proceedings of SPIE - The International Society for Optical Engineering, v 6346 PART 2, 2007.
    [18] Yilbas B. S., Sahin A. Z., Davies R., “Laser heating mechanism including evaporation process initiating laser drilling”, International Journal of Machine Tools and Manufacture, v 35, n 7, p 1047-1062, 1994.
    [19] Ganesh R. K., Faghri A., Hahn Y., “A generalized thermal modeling for laser drilling process - I. Mathematical modeling and numerical methodology”, International Journal of Heat and Mass Transfer, v 40, n 14, p 3351-3360, 1996.
    [20] Ganesh R. K., Faghri A., Hahn Y., “A Generalized thermal modeling for laser drilling process - II. Numerical simulation and results”, International Journal of Heat and Mass Transfer, v 40, n 14, p 3361-3373, 1996.
    [21] Batteh J. J., Chen M. M., Mazumder J., “Stagnation flow analysis of the heat transfer and fluid flow phenomena in laser drilling”, Journal of Heat Transfer, v 122, n 4, p 801-807, 2000.
    [22] Solana P., Kapadia P., Dowden J., Rodden W. S. O., Kudesia S. S., Hand D. P., Jones J. D. C., “Time dependent ablation and liquid ejection processes during the laser drilling of metals”, Optics Communications, v 191, n 1-2, p 97-112, 2001.
    [23] Salonitis K., Stournaras A., Tsoukantas G., Stavropoulos P., Chryssolouris G., “A theoretical and experimental investigation on limitations of pulsed laser drilling”, Journal of Materials Processing Technology, v 183, n 1, p 96-103, 2007.
    [24] Harilal S. S., Bindhu C. V., Tillack M. S., Najmabadi F., Gaeris A. C., “Internal structure and expansion dynamics of laser ablation plumes into ambient gases”, Journal of Applied Physics, v 93, n 5, p 2380-2388, 2003.
    [25] Harilal S. S., “Influence of spot size on propagation dynamics of laser-produced tin plasma”, Journal of Applied Physics, v 102, n 12, 2007.
    [26] Amoruso S., Bruzzese R., Wang X., Xia J., “Propagation of a femtosecond pulsed laser ablation plume into a background atmosphere”, Applied Physics Letters, v 92, n 4, 2008.
    [27] Anisimov S. I., Lukyanchuk B. S., Luches A., “Analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime”, Applied Surface Science, v 96-98, p 24-32, 1996.
    [28] Gusarov A. V., Gnedovets A. G., Smurov I., “Two-dimensional gas-dynamic model of laser ablation in an ambient gas”, Applied Surface Science, v 154, p 66-72, 2000.
    [29] Kim, K. R., Farson, D. F., “CO2 laser-plume interaction in materials processing”, Journal of Applied Physics, Volume 89, Issue 1, p 681-688, 2001.
    [30] Chen Z., Bogaerts A., “Laser ablation of Cu and plume expansion into 1 atm ambient gas”, Journal of Applied Physics, v 97, n 6, p 1-12, 2005.
    [31] Panda S., Pratsinis S. E., “Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor”, Nanostructured Materials, v 5, n 7-8, p 755-767, 1995.
    [32] Gnedovets A. G., Gusarov A. V., Smurov I., “A model for nanoparticles synthesis by pulsed laser evaporation”, Journal of Physics D: Applied Physics, v 32, n 17, p 2162-2168, 1999.
    [33] Muhlenweg H., Gutsch A., Schild A., Pratsinis S. E., “Process simulation of gas-to-particle-synthesis via population balances: Investigation of three models”, Chemical Engineering Science, v 57, n 12, p 2305-2322, 2002.
    [34] Tillack M. S., Blair D. W., Harilal S. S., “The effect of ionization on cluster formation in laser ablation plumes”, Nanotechnology, v 15, n 3, p 390-403, 2004.
    [35] Incropera F. D., DeWitt D. P., “Fundamentals of Heat and Mass Transfer”, Wiley, New York, 1985.
    [36] Anderson J. D., “Computational fluid dynamics: the basics with applications”, McGraw Hill, 1995.
    [37] Tannehill, J. C., Anderson, D. A., Pletcher, R. H., “Computational Fluid Mechanics and Heat Transfer”, 2nd ed., Taylor and Francis, Washington, DC, 1997.
    [38] Gusarov A. V., Gnedovets A. G., “Gas dynamics of laser ablation: Influence of ambient atmosphere”, Journal of Applied Physics, v 88, n 7, p 4352-4364, 2000.
    [39] Anisimov S. I., Khokhlov V. A., “Instabilities in Laser-Matter Interaction”, CRC-Press, Boca Raton, 1995.
    [40] Gnedovets A. G., Gusarov A. V., Smurov I., “Submicron particles synthesis by laser evaporation at low power density: A numerical analysis”, Applied Surface Science, v 154, p 508-513, 2000.
    [41] Gnedovets A. G., Gusarov A. V., Smurov I., “Simulation of nanoscale particles elaboration in laser-produced erosive flow”, Applied Surface Science, v 154, p 331-336, 2000.
    [42] Bohren C. F., Huffman D. R., “Absorption and scattering of light by small particles”, Wiley, 1983.
    [43] Jakubov T. S., Mainwaring D. E., “The surface tension of a solid at the solid-vacuum interface, an evaluation from adsorption and wall potential calculations”, Journal of Colloid and Interface Science, v 307, n 2, p 477-480, 2007.
    [44] Cheng D. K., “Field and Wave Electromagnetics”, Addison-Wesley, 1989.
    [45] Ake C. S., De Castro R. S., Sobral H., Villagran-Muniz. M., “Plume dynamics of cross-beam pulsed-laser ablation of graphite”, Journal of Applied Physics V100, n5, 2006.
    [46] Claeyssens F., Lade R. J., Rosser K. N., Ashfold M. N. R., “Investigations of the plume accompanying pulsed ultraviolet laser ablation of graphite in vacuum”, Journal of Applied Physics V89, 1, 2001.
    [47] Wang X. D., Michalowski A., Walter D., Sommer S., Kraus M., Liu J.S., Dausinger F., “Laser drilling of stainless steel with nanosecond double-pulse”, Optics and Laser Technology, v 41, n 2, p 148-153, 2009.

    下載圖示
    2019-07-31公開
    QR CODE