簡易檢索 / 詳目顯示

研究生: 陳思妤
Chen, Ssu-Yu
論文名稱: 薄膜與矽穿孔對晶圓翹曲之影響
The Effects of Film and TSV on Wafer Warpage
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 58
中文關鍵詞: 晶圓翹曲三維封裝矽穿孔ANSYS田口方法
外文關鍵詞: through silicon via (TSV), ANSYS, warpage, Taguchi method
相關次數: 點閱:88下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3C產品的發展使得人們生活更加便利的同時,所有電子產品都盡可能輕薄短小讓消費者便於攜帶與使用,同時內部元件也必須追求高效能、低成本的趨勢使產品更有競爭力。而晶圓尺寸越大,同一片晶圓上可生產出來的晶片就越多,將可以降低生產成本,晶圓直徑不斷增加與厚度薄化,勢必在製造過程中產生殘留應力與翹曲等問題。翹曲的產生主要來源在於各元件間熱膨脹係數的不同所引起,進而導致產品生產良率低落、可靠度不佳。
    本研究為了瞭解晶圓以及晶圓上的TSV (through silicon via)在熱製程下之翹曲情形,透過有限元素法對其進行模擬。本文主要是研究在熱製程下對晶圓的翹曲,首先模擬不同大小晶圓在熱製程下的翹曲,接著在晶圓加上不同材料的薄膜觀察其翹曲的狀況,最後模擬TSV對晶圓翹曲的影響。
    由模擬結果可以發現:(1)在單一晶圓方面,溫度越高晶圓的翹曲量越大,且在超過900°C時將產生塑性變形;晶圓尺寸越大,溫度對翹曲量的影響越大。(2)在晶圓對薄膜方面,銅薄膜對影響晶圓之翹曲程度最劇烈,二氧化矽與氮化矽加在銅薄膜上可以降低因銅薄薄造成的翹曲。(3)田口方法結果顯示間距直徑比對擁有TSV結構的晶片來說想翹曲程度最大。

    As the size of wafer becomes lager and lager, more dies can be made in single wafer, thus lowering the manufacturing cost. With larger and thinner wafers, wafer warpage can occur during the IC fabrication process due to existence of residual stresses. Warpage might affect yield and reliability. The main reason of warpage is the mismatch of the coefficients of thermal expansion (CTE) between the components.
    To figure out how the TSV (through silicon via) and thin film affect wafer warpage in different thermal processes, a finite element method was adopted for analysis in this study. Four models including bare wafers, wafers of different size, wafers with different thin films, and wafers with TSVs were studied.
    The simulation results show that a higher temperature will lead to a larger warpage for bare silicon wafers, especially when the temperature is larger than 900°C due to plastic deformation. In addition, the Cu thin film on the wafer will cause even larger warpage; whereas both silicon dioxide and silicon nitride thin films on the wafer can reduce the wafer warpage. Furthermore, through Taguchi method, we found out that ratio between pitch and TSV diameter is the main reason of wafer warpage.

    口試委員會審定書 # 摘要 i EXTENDED ABSTRACT ii 誌謝 vii 目錄 viii 表目錄 xi 圖目錄 xiii 第1章   緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 文獻回顧 4 1.4 論文架構 7 第2章 基礎理論 9 2.1 晶圓翹曲 9 2.2 TSV 10 2.2.1 技術與結構 10 2.2.2 製程概述 11 2.3 分析軟體介紹 13 2.3.1 熱分析原理 14 2.3.2 熱-結構耦合 15 2.4 田口方法介紹 16 2.4.1 直交表 16 2.4.2 信號雜訊比 17 2.4.3 因子反應分析 18 2.4.4 變異分析 18 第3章 有限元素分析 20 3.1 有限元素模擬規劃 20 3.2 有限元素模擬設定 21 3.2.1 實體模型建立 21 3.2.2 定義模型物理材料性質 22 3.2.3 建立網格 23 3.2.4 定義邊界條件 24 第4章 結果與討論 27 4.1 單一晶圓 27 4.1.1 形變 27 4.1.2 應力 32 4.2 薄膜對晶圓的影響 34 4.3 TSV對翹曲的影響 40 4.3.1 TSV模擬 40 4.3.2 深度與間距對翹曲影響 46 4.3.3 田口方法 49 第5章 結論與建議 54 5.1 結論 54 5.2 建議 55 參考文獻 56

    參考文獻
    [1] B. Leroy and C. Plougonven, "Warpage of silicon wafers," Journal of the Electrochemical Society, vol. 127, no. 4, pp. 961-970, 1980.
    [2] K. Barla, R. Herino, and G. Bomchil, "Stress in oxidized porous silicon layers," Journal of Applied Physics, vol. 59, no. 2, pp. 439-441, 1986.
    [3] J. P. Hebb and K. F. Jensen, "The effect of patterns on thermal stress during rapid thermal processing of silicon wafers," IEEE Transactions on Semiconductor Manufacturing, vol. 11, no. 1, pp. 99-107, 1998.
    [4] R. Van Silfhout, W. Van Driel, Y. Li, G. Zhang, and L. Ernst, "Prediction of back-end process-induced wafer warpage and experimental verification," in Electronic Components and Technology Conference, 2002. Proceedings. 52nd, 2002, pp. 1182-1187: IEEE.
    [5] N. R. Draney, J. J. Liu, and T. Jiang, "Experimental investigation of bare silicon wafer warp," in Microelectronics and Electron Devices, 2004 IEEE Workshop on, 2004, pp. 120-123: IEEE.
    [6] T. F. Kui, T. Ying, H. K. Siong, and K. Nioh, "Radiance RTP wafer out of pocket alarm influenced by preheat recipe," in Semiconductor Electronics, 2008. ICSE 2008. IEEE International Conference on, 2008, pp. 614-618: IEEE.
    [7] A. Abdelnaby, G. Potirniche, F. Barlow, A. Elshabini, S. Groothuis, and R. Parker, "Numerical simulation of silicon wafer warpage due to thin film residual stresses," in Microelectronics and Electron Devices (WMED), 2013 IEEE Workshop on, 2013, pp. 9-12: IEEE.
    [8] S. Yao, D. Xu, B. Xiong, and Y. Wang, "The plastic and creep behavior of silicon microstructure at high temperature," in Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, 2013, pp. 159-162: IEEE.
    [9] N. Ranganathan, K. Prasad, N. Balasubramanian, and K. Pey, "A study of thermo-mechanical stress and its impact on through-silicon vias," Journal of Micromechanics and Microengineering, vol. 18, no. 7, p. 075018, 2008.
    [10] K. H. Lu et al., "Thermal stress induced delamination of through silicon vias in 3-D interconnects," in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010, pp. 40-45: IEEE.
    [11] S.-K. Ryu, K.-H. Lu, X. Zhang, J.-H. Im, P. S. Ho, and R. Huang, "Impact of near-surface thermal stresses on interfacial reliability of through-silicon vias for 3-D interconnects," IEEE Transactions on Device and Materials Reliability, vol. 11, no. 1, pp. 35-43, 2011.
    [12] W. Kwon et al., "Stress evolution in surrounding silicon of Cu-filled through-silicon via undergoing thermal annealing by multiwavelength micro-Raman spectroscopy," Applied Physics Letters, vol. 98, no. 23, p. 232106, 2011.
    [13] F. Che, H. Li, X. Zhang, S. Gao, and K. Teo, "Wafer level warpage modeling methodology and characterization of TSV wafers," in Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 2011, pp. 1196-1203: IEEE.
    [14] E. Cheng and Y.-L. Shen, "Thermal expansion behavior of through-silicon-via structures in three-dimensional microelectronic packaging," Microelectronics Reliability, vol. 52, no. 3, pp. 534-540, 2012.
    [15] F. Che, W. Putra, A. Heryanto, A. Trigg, X. Zhang, and C. Gan, "Study on Cu protrusion of through-silicon via," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 5, pp. 732-739, 2013.
    [16] C. Lee et al., "Impact of high density TSVs on the assembly of 3D-ICs packaging," Microelectronic Engineering, vol. 107, pp. 101-106, 2013.
    [17] C. Yeh et al., "Cu pattern density impacts on 2.5 D TSI warpage using experimental and FEM analysis," in Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, 2014, pp. 297-303: IEEE.
    [18] H.-Y. Tsai and C.-W. Kuo, "Thermal stress and failure location analysis for through silicon via in 3D integration," Journal of Mechanics, vol. 32, no. 1, pp. 47-53, 2016.
    [19] Y. Ito, W. Natsu, M. Kunieda, N. Maruya, and N. Iguchi, "Accuracy estimation of shape measurement of thin-large panel with three-point-support inverting method," JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, vol. 49, no. 3, pp. 930-934, 2006.
    [20] A. F657, "Standard Test Method for Measuring Warp and Total Thickness Variation on Silicon Slices and Wafers by a Non-contact Scanning Method."
    [21] G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proc. R. Soc. Lond. A, vol. 82, no. 553, pp. 172-175, 1909.
    [22] F. P. Carson, Y. C. Kim, and I. S. Yoon, "3-D stacked package technology and trends," Proceedings of the IEEE, vol. 97, no. 1, pp. 31-42, 2009.
    [23] M. Motoyoshi, "Through-silicon via (TSV)," Proceedings of the IEEE, vol. 97, no. 1, pp. 43-48, 2009.
    [24] 劉建惟, "三維積體電路直通矽穿孔技術之應用趨勢與製程簡介," Nano Communication, vol. 20, pp. 20-27, 2013.
    [25] B. Majeed, D. S. Tezcan, B. Vandevelde, F. Duval, P. Soussan, and E. Beyne, "Electrical characterization, modeling and reliability analysis of a via last TSV," in Electronics Packaging Technology Conference (EPTC), 2010 12th, 2010, pp. 124-128: IEEE.
    [26] T. Pandhumsoporn, L. Wang, M. Feldbaum, P. Gadgil, M. Puech, and P. Maquin, "High-etch-rate deep anisotropic plasma etching of silicon for MEMS fabrication," in Smart Structures and Materials 1998: Smart Electronics and MEMS, 1998, vol. 3328, pp. 93-102: International Society for Optics and Photonics.
    [27] M. J. Wolf et al., "High aspect ratio TSV copper filling with different seed layers," in Electronic Components and Technology Conference, 2008. ECTC 2008. 58th, 2008, pp. 563-570: IEEE.
    [28] J.-F. Li, "Introduction to 3D Integration Technology using TSV," Department of Electrical Engineering, National Central Universty, Taiwan, dowloaded from URL on Apr, vol. 4, 2016.
    [29] M. Modell and R. C. Reid, Thermodynamics and its Applications. Prentice Hall, 1983.
    [30] H.-H. Lee, "Taguchi methods: principles and practices of quality design," Gau Lih Book Co., Ltd, 2000.
    [31] H.-H. Lee, Finite Element Simulations with ANSYS Workbench 17. SDC publications, 2017.
    [32] 李偉豪, "以田口方法縮小 TSV 之尺寸," 成功大學工程科學系學位論文, pp. 1-74, 2017.
    [33] 梁伯維, "450mm 晶圓在快速與閃光燈熱退火下之形變行為," 成功大學工程科學系學位論文, pp. 1-133, 2017.
    [34] L. Ji, X. Jing, K. Xue, C. Xu, H. He, and W. Zhang, "Effect of annealing after copper plating on the pumping behavior of through silicon vias," in Electronic Packaging Technology (ICEPT), 2014 15th International Conference on, 2014, pp. 101-104: IEEE.
    [35] A. Heryanto et al., "Effect of copper TSV annealing on via protrusion for TSV wafer fabrication," Journal of Electronic Materials, vol. 41, no. 9, pp. 2533-2542, 2012.
    [36] K. H. Lu, X. Zhang, S.-K. Ryu, J. Im, R. Huang, and P. S. Ho, "Thermo-mechanical reliability of 3-D ICs containing through silicon vias," in Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009, pp. 630-634: IEEE.
    [37] K. Athikulwongse, A. Chakraborty, J.-S. Yang, D. Z. Pan, and S. K. Lim, "Stress-driven 3D-IC placement with TSV keep-out zone and regularity study," in Proceedings of the International Conference on Computer-Aided Design, 2010, pp. 669-674: IEEE Press.

    下載圖示 校內:2023-07-14公開
    校外:2023-07-14公開
    QR CODE