| 研究生: |
劉建甫 Liu, Chien-Fu |
|---|---|
| 論文名稱: |
探討核醣體蛋白RPL19在轉譯蛋白中扮演的角色與功能 Dissecting the functional role of RPL19 in translational regulation |
| 指導教授: |
曾大千
Tseng, T. Joseph |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 核醣體蛋白L19 、五端非轉譯區內之核醣體結合區 |
| 外文關鍵詞: | Ribosomal protein L19, internal ribosome entry site |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核醣體是由核醣體蛋白及核醣體核糖核酸所構成。過去認為在核醣體轉譯蛋白時,核醣體蛋白只是扮演著協助的角色。但是近來越來越多的研究指出,其實核醣體蛋白也具有調控蛋白質生成的功能,但是目前還不清楚核醣體蛋白透過什麼機制來調控蛋白質的生合成。週期素D1(cyclin D1)具有調節細胞週期的功能,它會在G1時期開始合成,當cyclin D1累積到一定的量之後會促使細胞啟動S時期的基因使細胞進入S時期。過去的研究發現核醣體蛋白L19(RPL19)具有調控cyclin D1的能力,這可能代表著RPL19會透過調控cyclin D1來影響細胞週期的變化。我們發現RPL19 會和hnRNP A1共同調控cyclin D1的表現量,這個調控是透過影響cyclin D1的五端非轉譯區內之核醣體結合區(IRES)活性。更進一步,我們發現RPL19和hnRNP A1的共同調控只發生在S時期的後期,並且我們也確認缺乏RPL19的表現會使cyclin D1的轉譯效率下降,進而會使細胞被屏障在G1時期。除了cyclin D1外,我們也驗證了RPL19會經由調控cyclin E1的IRES活性和轉譯效率使得cyclin E1的表現量下降,並且RPL19與cyclin E1 mRNA結合的時間點也與cyclin E1的蛋白質生成一致。為了要更大範圍地檢視會被RPL19調控的基因,我們使用核醣體圖譜定序分析RPL19缺少時對細胞造成的影響。經由生物資訊分析,RPL19的缺少主要會影響細胞週期和細胞凋亡,藉由此我們也發現MAPK1的IRES活性和轉譯效率也會受到RPL19的調控。本篇研究指出RPL19會透過調控特定基因如cyclin D1、cyclin E1、MAPK1的IRES活性和轉譯效率來調節其表現量,進一步對細胞週期的運行產生變化。
The ribosome is a complex composed of rRNAs and ribosomal proteins. Traditionally, ribosome can translate proteins and ribosomal proteins were considered as co-factors to execute the protein translation. But in the last decade, numerous studies have demonstrated that ribosomal proteins not only play a role as co-factors of translation complex but also regulate the protein synthesis of specific mRNAs. However the mechanism of these ribosomal proteins to regulate the protein synthesis is still unclear. Cyclin D1 plays an important role in cell cycle progression. The synthesis of cyclin D1 is initiated during G1 phase and drives the G1/S phase transition. From the previous study, the ribosomal protein L19(RPL19) was reported to regulate the cyclin D1 protein expression. It indicated RPL19 may be a regulator of cell cycle through controlling cyclin D1 protein expression. And then we identified that RPL19 can cooperate with heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) to regulate cell cycle progression through regulating the internal ribosome entry site (IRES) activity of cyclin D1. Furthermore, we confirmed that silencing RPL19 expression would reduce cyclin D1 translation efficiency and block the cell cycle in G1 phase. Besides, we are also interested in that if there are other cell cycle process genes being regulated by RPL19. Cyclin E1 has been considered an essential and master regulator of progression through G1 phase of the cell cycle. We find that the 5’UTR of cyclin E1 mRNA carries an IRES element and RPL19 plays a role in regulating the IRES activity and translation efficiency of cyclin E1.We also see that RPL19 has interaction with cyclin E1 mRNA at G1 phase. To better understand the role of RPL19 in cell process, we analyzed ribosomal profiling of knock-down RPL19 and found that RPL19 main impact cell-cycle and apoptosis progress. Mitogen-activated protein kinase 1(MAPK1) have a positive role in controlling normal and Ras-dependent cell proliferation. Furthermore, we identified MAPK1 is regulated by RPL19 through IRES activity and translation efficiency. We think that RPL19 may be a model to explain the mechanism of the ribosomal proteins to regulate the specific protein synthesis. To sum up, we identified that RPL19 regulates cyclin D1, cyclin E1 and MAPK1’s protein expression through regulating their IRES activities and translation efficiency. Through these mechanisms, RPL19 can mainly regulate cell cycle and apoptosis process.
Bachmann, K., Neumann, A., Hinsch, A., Nentwich, M.F., El Gammal, A.T., Vashist, Y., Perez, D., Bockhorn, M., Izbicki, J.R., and Mann, O. (2015). Cyclin D1 is a strong prognostic factor for survival in pancreatic cancer: analysis of CD G870A polymorphism, FISH and immunohistochemistry. Journal of surgical oncology 111, 316-323.
Balasubramanian, S., Zheng, D., Liu, Y.J., Fang, G., Frankish, A., Carriero, N., Robilotto, R., Cayting, P., and Gerstein, M. (2009). Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome biology 10, R2.
Bartek, J., Bartkova, J., and Lukas, J. (1996). The retinoblastoma protein pathway and the restriction point. Current opinion in cell biology 8, 805-814.
Bartkova, J., Lukas, J., Muller, H., Strauss, M., Gusterson, B., and Bartek, J. (1995). Abnormal patterns of D-type cyclin expression and G1 regulation in human head and neck cancer. Cancer research 55, 949-956.
Bee, A., Ke, Y., Forootan, S., Lin, K., Beesley, C., Forrest, S.E., and Foster, C.S. (2006). Ribosomal protein l19 is a prognostic marker for human prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 12, 2061-2065.
Ben-Shem, A., Jenner, L., Yusupova, G., and Yusupov, M. (2010). Crystal structure of the eukaryotic ribosome. Science (New York, NY) 330, 1203-1209.
Bert, A.G., Grepin, R., Vadas, M.A., and Goodall, G.J. (2006). Assessing IRES activity in the HIF-1alpha and other cellular 5' UTRs. RNA (New York, NY) 12, 1074-1083.
Bhat, P., Shwetha, S., Sharma, D.K., Joseph, A.P., Srinivasan, N., and Das, S. (2015). The beta hairpin structure within ribosomal protein S5 mediates interplay between domains II and IV and regulates HCV IRES function. Nucleic acids research 43, 2888-2901.
Bonnal, S., Pileur, F., Orsini, C., Parker, F., Pujol, F., Prats, A.C., and Vagner, S. (2005). Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. The Journal of biological chemistry 280, 4144-4153.
Bonnal, S., Schaeffer, C., Creancier, L., Clamens, S., Moine, H., Prats, A.C., and Vagner, S. (2003). A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. The Journal of biological chemistry 278, 39330-39336.
Cammas, A., Pileur, F., Bonnal, S., Lewis, S.M., Leveque, N., Holcik, M., and Vagner, S. (2007). Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. Molecular biology of the cell 18, 5048-5059.
Costa-Mattioli, M., Svitkin, Y., and Sonenberg, N. (2004). La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Molecular and cellular biology 24, 6861-6870.
Dressman, M.A., Baras, A., Malinowski, R., Alvis, L.B., Kwon, I., Walz, T.M., and Polymeropoulos, M.H. (2003). Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer. Cancer research 63, 2194-2199.
Dreyfuss, G., Kim, V.N., and Kataoka, N. (2002). Messenger-RNA-binding proteins and the messages they carry. Nature reviews Molecular cell biology 3, 195-205.
Erlanson, M., and Landberg, G. (2001). Prognostic implications of p27 and cyclin E protein contents in malignant lymphomas. Leukemia & lymphoma 40, 461-470.
Evans, J.R., Mitchell, S.A., Spriggs, K.A., Ostrowski, J., Bomsztyk, K., Ostarek, D., and Willis, A.E. (2003). Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 22, 8012-8020.
Fernandez, J., Yaman, I., Mishra, R., Merrick, W.C., Snider, M.D., Lamers, W.H., and Hatzoglou, M. (2001). Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. The Journal of biological chemistry 276, 12285-12291.
Gebauer, F., and Hentze, M.W. (2004). Molecular mechanisms of translational control. Nature reviews Molecular cell biology 5, 827-835.
Hertz, M.I., Landry, D.M., Willis, A.E., Luo, G., and Thompson, S.R. (2013). Ribosomal protein S25 dependency reveals a common mechanism for diverse internal ribosome entry sites and ribosome shunting. Molecular and cellular biology 33, 1016-1026.
Holcik, M., Gordon, B.W., and Korneluk, R.G. (2003). The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Molecular and cellular biology 23, 280-288.
Jackson, R.J., Hellen, C.U., and Pestova, T.V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature reviews Molecular cell biology 11, 113-127.
Jang, S.K., Davies, M.V., Kaufman, R.J., and Wimmer, E. (1989). Initiation of protein synthesis by internal entry of ribosomes into the 5' nontranslated region of encephalomyocarditis virus RNA in vivo. Journal of virology 63, 1651-1660.
Jang, S.K., Krausslich, H.G., Nicklin, M.J., Duke, G.M., Palmenberg, A.C., and Wimmer, E. (1988). A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of virology 62, 2636-2643.
Jares, P., Colomer, D., and Campo, E. (2007). Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nature reviews Cancer 7, 750-762.
Jean-Philippe, J., Paz, S., and Caputi, M. (2013). hnRNP A1: the Swiss army knife of gene expression. International journal of molecular sciences 14, 18999-19024.
Jin, M., Inoue, S., Umemura, T., Moriya, J., Arakawa, M., Nagashima, K., and Kato, H. (2001). Cyclin D1, p16 and retinoblastoma gene product expression as a predictor for prognosis in non-small cell lung cancer at stages I and II. Lung cancer (Amsterdam, Netherlands) 34, 207-218.
Jirawatnotai, S., Hu, Y., Michowski, W., Elias, J.E., Becks, L., Bienvenu, F., Zagozdzon, A., Goswami, T., Wang, Y.E., Clark, A.B., et al. (2011). A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 474, 230-234.
Kondrashov, N., Pusic, A., Stumpf, C.R., Shimizu, K., Hsieh, A.C., Xue, S., Ishijima, J., Shiroishi, T., and Barna, M. (2011). Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145, 383-397.
Kuroda, K., Takenoyama, M., Baba, T., Shigematsu, Y., Shiota, H., Ichiki, Y., Yasuda, M., Uramoto, H., Hanagiri, T., and Yasumoto, K. (2010). Identification of ribosomal protein L19 as a novel tumor antigen recognized by autologous cytotoxic T lymphocytes in lung adenocarcinoma. Cancer science 101, 46-53.
Macejak, D.G., and Sarnow, P. (1991). Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature 353, 90-94.
Martin, I., Kim, J.W., Lee, B.D., Kang, H.C., Xu, J.C., Jia, H., Stankowski, J., Kim, M.S., Zhong, J., Kumar, M., et al. (2014). Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell 157, 472-485.
Mitchell, S.A., Spriggs, K.A., Bushell, M., Evans, J.R., Stoneley, M., Le Quesne, J.P., Spriggs, R.V., and Willis, A.E. (2005). Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes & development 19, 1556-1571.
Morrish, B.C., and Rumsby, M.G. (2002). The 5' untranslated region of protein kinase Cdelta directs translation by an internal ribosome entry segment that is most active in densely growing cells and during apoptosis. Molecular and cellular biology 22, 6089-6099.
Parenteau, J., Durand, M., Morin, G., Gagnon, J., Lucier, J.F., Wellinger, R.J., Chabot, B., and Elela, S.A. (2011). Introns within ribosomal protein genes regulate the production and function of yeast ribosomes. Cell 147, 320-331.
Pelletier, J., and Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325.
Pyronnet, S., Pradayrol, L., and Sonenberg, N. (2000). A cell cycle-dependent internal ribosome entry site. Molecular cell 5, 607-616.
Rodriguez-Celma, J., Pan, I.C., Li, W., Lan, P., Buckhout, T.J., and Schmidt, W. (2013). The transcriptional response of Arabidopsis leaves to Fe deficiency. Frontiers in plant science 4, 276.
Satyanarayana, A., and Kaldis, P. (2009). Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28, 2925-2939.
Schraml, P., Bucher, C., Bissig, H., Nocito, A., Haas, P., Wilber, K., Seelig, S., Kononen, J., Mihatsch, M.J., Dirnhofer, S., et al. (2003). Cyclin E overexpression and amplification in human tumours. The Journal of pathology 200, 375-382.
Sewify, E.M., Afifi, O.A., Mosad, E., Zaki, A.H., and El Gammal, S.A. (2014). Cyclin D1 amplification in multiple myeloma is associated with multidrug resistance expression. Clinical lymphoma, myeloma & leukemia 14, 215-222.
Sherr, C.J. (1993). Mammalian G1 cyclins. Cell 73, 1059-1065.
Sherr, C.J. (1994). G1 phase progression: cycling on cue. Cell 79, 551-555.
Sherr, C.J., and McCormick, F. (2002). The RB and p53 pathways in cancer. Cancer cell 2, 103-112.
Sherr, C.J., and Roberts, J.M. (2004). Living with or without cyclins and cyclin-dependent kinases. Genes & development 18, 2699-2711.
Spriggs, K.A., Stoneley, M., Bushell, M., and Willis, A.E. (2008). Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biology of the cell / under the auspices of the European Cell Biology Organization 100, 27-38.
Stacey, D.W. (2003). Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Current opinion in cell biology 15, 158-163.
Tange, T.O., Damgaard, C.K., Guth, S., Valcarcel, J., and Kjems, J. (2001). The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. The EMBO journal 20, 5748-5758.
Tissier, F., Louvel, A., Grabar, S., Hagnere, A.M., Bertherat, J., Vacher-Lavenu, M.C., Dousset, B., Chapuis, Y., Bertagna, X., and Gicquel, C. (2004). Cyclin E correlates with malignancy and adverse prognosis in adrenocortical tumors. European journal of endocrinology / European Federation of Endocrine Societies 150, 809-817.
Wolowiec, D., Mekki, Y., Ffrench, P., Manel, A.M., Bertrand, Y., Rimokh, R., Philippe, N., Bryon, P.A., and Ffrench, M. (1996). Differential expression of cell proliferation regulatory proteins in B- and T-lineage acute lymphoblastic leukaemias. British journal of haematology 95, 518-523.
Xue, S., and Barna, M. (2012). Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nature reviews Molecular cell biology 13, 355-369.
Xue, S., Tian, S., Fujii, K., Kladwang, W., Das, R., and Barna, M. (2015). RNA regulons in Hox 5' UTRs confer ribosome specificity to gene regulation. Nature 517, 33-38.
校內:2025-01-01公開