| 研究生: |
陳俊維 Chen, Chun-Wei |
|---|---|
| 論文名稱: |
綠色新冷媒材料之未來發展趨勢研究 Study on Future Development Trends of Green Refrigerant Materials |
| 指導教授: |
陳家榮
Chen, Chia-Yon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 綠色冷媒 、層級分析法 、模糊多準則決策方法 |
| 外文關鍵詞: | AHP, green refrigerant, FMCDM, Fuzzy TOPSIS |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之主旨係針對綠色新冷媒材料之未來發展趨勢及在因應此趨勢條件下之冷媒最適研發技術進行探討,研究結果將提供冷凍空調相關產業及單位作為後續冷媒研發方向之參考。在方法上,首先係透過持有不同領域專業知識與豐富經驗之專家學者為本研究之決策群體,研擬影響未來綠色新冷媒材料發展之因素指標,進而構建乙套預測綠色新冷媒材料發展之層級架構,同時運用層級分析法(Analytic Hierarchy Process, AHP)之分析模式以決定出各指標間之相對重要程度,進以獲得影響綠色新冷媒材料未來發展走向、趨勢之關鍵性指標。接著將所獲得之指標進一步結合模糊多準則決策方法( Fuzzy Multiple Criteria Decision Making, FMCDM ) 之Fuzzy TOPSIS分析模式,以探討評估冷媒之各種主要研發技術於各評量準則下之整體性效用,藉以評選出最能符合、滿足未來市場及環境所需之綠色冷媒材料的研發技術。其獲得之結論有:
一、綠色新冷媒材料之未來發展,應以技術特性(權重值0.189)、生態保護(權重值0.541)、經濟效益(權重值0.147)與總體環境(權重值0.124)等四大層面為重點考量。技術特性層面須考量能源效率(權重值0.0945)與作業特性(權重值0.0945)等二要素;生態保護須考量安全指標(權重值0.3089)、環保指標(權重值0.1547)及材料特性(權重值0.0774)等三要素;經濟效益層面須考量綠色新冷媒材料之易取性(權重值0.0481)、綠色新冷媒材料之成本(權重值0.0607)及匹配元件成本(權重值0.0382)等三要素;總體環境層面則須考量產業競爭環境(權重值0.0087)、技術環境(權重值0.0254)、經濟環境(權重值0.0056)及制度環境(權重值0.0843)等四要素。若就整體層級架構之最終指標而言,共須考量能源效率比值(權重值0.0630)、冷凍能力(權重值0.0315)、溫度滑差(權重值0.0609)、潛熱值(權重值0.0092)、熱傳導係數(權重值0.0042)、熱力性質(權重值0.0203)、毒性指標(權重值0.0883)、燃燒性指標(權重值0.0504)、爆炸性(權重值0.0633)、對健康不良性(權重值0.1069)、臭氧層破壞潛力(權重值0.0774)、全球暖化潛力(權重值0.0774)、安定性(權重值0.0365)、腐蝕性(權重值0.0127)、回收性(權重值0.0198)、再用性(權重值0.0084)、綠色新冷媒材料之易取性(權重值0.0481)、綠色新冷媒材料之成本(權重值0.0607)、匹配元件成本(權重值0.0382)、市場競爭威脅程度(權重值0.0087)、技術累積層次與技術相互依存性(權重值0.0085)、產業系統技術整合能力(權重值0.0085)、技術機會(權重值0.0085)、經濟體系對綠色新冷媒材料發展之支持度(權重值0.0056)、產業法規限制綠色新冷媒材料發展之程度(權重值0.0702)及政府政策對企業採用綠色材料推動之程度(權重值0.0141)等26項評估指標。綜觀上述之結果,綠色新冷媒材料未來之發展倘若能以技術特性、生態保護、經濟效益與總體環境等四層面為發展之基礎,並加以兼顧 26項評估指標之均衡發展,將使綠色新冷媒材料能朝向多元化之發展,進而開發出更具競爭性之創新環保冷媒材料。
二、由冷媒各研發技術之績效值評估結果可發現,HFC成份之混合冷媒技術在「技術特性」、「經濟效益」上具有最佳之優勢條件,其中包含了「能源效率比值」、「冷凍能力」、「溫度滑差」、「潛熱值」、「熱力性質」、「燃燒性」、「安定性」、「匹配元件成本」及「技術累積層次與技術相互依存性」、「產業系統技術整合能力」等具競爭力之特點,但此技術在「總體環境」之表現上則顯得十分薄弱,尤其在「市場競爭威脅」、「技術機會」、「社會經濟體系支持度」、「產業法規限制」及「政府政策支持」等準則上最差,另在「對人體健康不良性」、「臭氧層破壞潛力」與「全球暖化潛力」上,亦獲得了不佳的評比。HC成份之冷媒技術在四項評量層面上獲得了較為平均的績效,但在「燃燒性」及「爆炸性」等二項評量準則上,卻得到最差的評比。而自然冷媒技術則具有最好的「生態保護」與「總體環境」優勢,其在「毒性」、「爆炸性」、「對人體健康不良性」、「臭氧層破壞潛力」、「全球暖化潛力」、「腐蝕性」、「回收性」、「再用性」、「易取性」、「成本」、「技術機會」、「社會經濟體系支持度」、「產業法規限制」與「政府政策支持」等準則上尤具競爭力,然此技術於「技術特性」層面上具有極為負面的評價,其中在「冷凍能力」、「溫度滑差」、「潛熱值」、「熱傳導係數」及「熱力性質」等評量準則上表現最劣。另在奈米冷媒技術上,此技術無特別突出之優勢條件,僅在「熱傳導係數」及「市場競爭威脅」此二準則上有較佳之表現,該技術在「生態保護」及「經濟效益」二層面上具有顯著劣勢,分析其劣勢主要來自於「毒性」、「安定性」、「腐蝕性」、「回收性」、「易取性」、「成本」與「匹配元件成本」等表現最差之準則,且於「能源效率比值」、「技術累積層次與技術相互依存性」及「產業系統技術整合能力」之評量準則上,亦獲得較差之評價。
三、運用Fuzzy TOPSIS分析模式於整合各專家學者針對冷媒研發技術於各評量準則下之整體性效用評估後,可得知具有最大偏好程度之技術為自然冷媒技術,其次為 HC 成份之冷媒技術,再來為 HFC 成份之混合冷媒技術,而奈米冷媒技術則獲得了最小的偏好度。此結果顯示出於本研究專家學者之專業認知中,自然冷媒技術應是最能符合、滿足未來綠色冷媒發展趨勢之最適研發技術。
The subject discussed in this study is the general development trend of green refrigerants. The results of this study are used to find the optimal conditions for R&D technology for the studied green refrigerants based on this trend. The method for this study is as follows: Firstly, a group of experts and scholars with different areas of expertise and experience are used as the decision-making group of this study. This group is given the task of studying the factors that should be taken into account in refrigerant development and using these factors to rate the different methods of development. Then, they construct a set structure that organize these factors into a development chart that can help to predict the development of these refrigerants. At the same time, the Analytic Hierarchy Process (AHP) model is used to analyze the relative importance of these indicating factors to further predict the trends of these green refrigerant development methods. Next, these indicators are placed into the Fuzzy Multiple Criteria Decision Making (FMCDM) Fuzzy TOPIS analysis model for better discussion and assessment of the effectiveness of the R&D technology of green refrigerants as well as to select the best technology for the needs of the future market and environment. The conclusions from this study are as follows:
(1) For the future development of green refrigerant materials, the four sides that are considered are: technical characteristics (weight value 0.189), ecological protection (weight value 0.541), economic benefit (weight value 0.147) and the environment (weight value 0.124). With regard to the technical characteristics, two factors that must be taken into consideration are energy efficiency (weight value 0.0945) and operating characteristics (weight value 0.0945). With regard to ecological protection, three factors that must be taken into consideration are safety indicators (weight value 0.3089), environmental indicators (weight value 0.1547), and material characteristics (weight value 0.0774). With regard to economic benefit, the three factors that must be taken into consideration are the accessibility of green refrigerant material (weight value 0.0481), the costs of green refrigerant material (weight value 0.0607), and the costs of matching components (weight value 0.0382). With regard to the environment, the four factors that must be taken into consideration are industrial competitiveness (weight value 0.0087), technological environment (weight value 0.0254), economic environment (weight value 0.0056) and institutional environment (weight value 0.0843). If the ultimate target is the overall hierarchy, then the following twenty-six factors must also be taken into consideration: energy efficiency ratio (weight value 0.0630), refrigeration capacity (weight value 0.0315), temperature slip (weight value 0.0609), latent heat value (weight value 0.0092), thermal conductivity (weight value 0.0042), thermal properties (weight value 0.0203), toxicity indicators (weight value 0.0883), combustion indicators (weight value 0.0504), explosiveness (weight value 0.0633), health detriments (weigh value 0.1069), ozone depletion potential (weight value 0.0774), global warming potential (weight value 0.0774), stability (weight value 0.0365), corrosiveness (weight value 0.0127), recyclability (weight value 0.0198), reusability (weight value 0.0084), accessibility (weight value 0.0481) and costs (weight value 0.0607) of green refrigerant material, costs of matching components (weight value 0.0382), market competition (weight value 0.0087), technical-level accumulation and technical interdependence (weight value 0.0085), industrial systems technological integration capability (weight value 0.0085), technological opportunities (weight value 0.0085), economic support for green refrigerant development (weight value 0.0056), industrial rules and regulations governing green refrigerant development (weight value 0.0702) and government policies promoting the adoption of green refrigerants (weight value 0.0141). The future development of green refrigerants should be based on the four explicated levels—technical characteristics, ecological protection, economic benefit, and the environment—and the above-mentioned twenty-six factors, in order to diversify the future development of green refrigerants, as well as to assist in developing more competitive and environmentally-friendly refrigerants.
(2) From the results of the performance assessment for refrigerant R&D, HFC mixed component refrigerant technology received the best ratings in the areas of “technical characteristics” and “economic benefit”, which include the “energy efficiency ratio”, “refrigeration capacity”, “temperature slip”, “latent heat value”, “thermal properties”, “combustion indicators”, “stability”, “costs of matching components”, as well as “technical-level accumulation and technical interdependence” and “industrial systems technological integration capability”. However, the ratings were particularly weak in the areas of “the environment”, especially with regard to “market competition”, “technological opportunities”, “economic support for green refrigerant development”, “ industrial rules and regulations governing green refrigerant development”, and “government policies promoting the adoption of green refrigerants”. Poor ratings were also generated in the areas of “health detriments”, “ozone depletion potential”, and “global warming potential”. For HC component refrigerant development technology, there was an overall even or average rating for the four levels of significance, but “ combustion indicators” and “explosiveness” in particular, had the poorest ratings. Natural refrigerant development technology had an advantage in the areas of “ecological protection” and “the environment,” but in the areas of “toxicity”, “explosiveness”, “health detriments”, “ozone depletion potential”, “global warming potential”, “corrosiveness”, “recyclability”, “reusability”, “accessibility”, “costs”, “technological opportunities”, “economic support for development”, “industrial rules and regulations”, and “governmental policies”, there is cause for competition. However, the category “technical characteristics”, received extremely negative ratings, especially in the areas of “refrigeration capacity”, “temperature slip”, “latent heat value”, “thermal capacity”, and “thermal properties”. Nanometer refrigerant development technology does not have any especially obvious advantages, but does have outstanding performance in the areas of “thermal conductivity” and “market competition”. Yet, in the areas of “ecological protection” and “economic benefit”, it has a disadvantage. After analysis, it can be said that this disadvantage is largely a result of achieving the lowest performance ratings in the areas of “toxicity”, “stability”, “corrosiveness”, “recyclability”, “accessibility”, “costs”, and “costs of matching components”, among others. The areas of “energy efficiency ratio”, “technical-level accumulation and technical interdependence” and “industrial systems technological integration capability” also generated poor results.
(3) The conclusion obtained from using the Fuzzy TOPSIS analysis model and from a group of experts and scholars of different experiences and expertise discussing and assessing refrigerant technology development, is that natural refrigerant technology is the preferred method. The order of preference after natural refrigerant technology is: the HC component refrigerant development technology, the HFC mixed component refrigerant development technology, and lastly the nanometer refrigerant development technology. These results show that experts and scholars believe that natural refrigerant development technology is the best solution for green refrigerant technology development.
英文部份:
1. Buckely, J. J.(1985),“Fchical Fuzzy Hierarchical Analysis”, Fuzzy Sets and Systems, Vol. 17, No. 3, pp. 233-247.
2. Brandt, E.(1993), “The Eradication of CFCs”, Chemical Engineering, Vol.100, No.2, pp. 25-26.
3. Barreau, M. and Blanc, J.(1999), “Present European environmentally friendly CFC & HCFC substitutes for refrigeration and air condition applications”, The Twentieth International Congress of Refrigeration, Sydney, Australia.
4. Braun, J. E., et al.(2002), “A cost-based method for comparing alternative refrigerants applied to R-22 systems”, International Journal of Refrigeration, Vol. 21, No. 5, pp. 107-125.
5. Chen, S. J. and Hwang, C. L.(1992), “Fuzzy Multiple Attribute Decision Making Methods and Applications, Springer-Verlag, Berlin Heidelberg.
6. Chang, P. T. and Lee, E. S.(1995), “The Estimation of Normalized Fuzzy Weights”, Computers and Mathematics with Application, Vol. 29, No.5, pp. 21-24.
7. Chen, C. T.(2000), “Extensions of The TOPSIS for Group Decision-Making under Fuzzy Environment”, Fuzzy Sets and Systems, Vol. 114, pp. 1-9.
8. Dubois, D. and Prade, H.(1978), “Operations on Fuzzy Numbers”, International Journal of System Science, Vol. 9, No. 1, pp. 613-626.
9. European Chemical News(1991),“HCFC-123 Tox-Test Results Could Delay CFC Phase-out”, European Chemical News.
10. Hwang, C. L. and Yoon, K.(1981), “Multiple Attribute Decision Making Methods and Applications”, Springer, Berlin Heidelberg.
11. Hwang, Y., et al.(2000), “Experience with Refrigerant Mixtures”, ASHRAE Transactions, pp. 765-775.
12. Jung, D. J., et al.(2000), “Testing of a Hydrocarbon Mixture in Domestic Refrigerators”, ASHRAE Transactions:Symposia, Vol. 19, No. 3, pp. 1077-1083.
13. Jung, D. J., et al.(2004), “Testing of propane/isobutene mixture in domestic refrigerators”, International Journal of Refrigeration, Vol. 23, No. 7, pp. 517-527.
14. Keeney, R. and Raiffa, H.(1991), “Decision with Multiple Objectives: Preference and Value Trade-off”, Wiley and Sons, New York.
15. Klein, S. A.(1992), “Design considerations for refrigeration”, International Journal of Refrigeration, Vol.15, pp.181-185.
16. Klaus, M., et al.(1998), “Hydrocarbon Technology”, Eschborn.
17. Lee, E. S. and Li, R. L.(1988), “Comparison of fuzzy numbers based on the probability measures of fuzzy events”, Computers and Mathematics with Application, Vol. 15, pp. 887-896.
18. Liang, G. S.(1999), “Fuzzy MCDM based on ideal and anti-ideal concepts”, European Journal of Operational Research, Vol.112, pp. 682-691.
19. Lavelle, J.(2000), “U.S. Refrigerant Issues”, ASHRAE Journal, Vol. 41(11), pp. 20.
20. MacCrimmon, K. R.(1989), “Improving the System Design and Evaluation Process by the Use of Trade-off Information: An Application to Northeast Corridor Transportation Planning”, RM-5877-Dot, The Rand Corporation, Santa.
21. Nunnally, J.(1978), “Psychometric Theory”, New York: McGraw-Hill.
22. Negi, D. S.(1989), “Fuzzy Analysis and Optimization”, Ph.D. Thesis, Department of Industrial Engineering, Kansas State University.
23. Peter, S.(1996), “Refrigerants on the Market for R-22 Substitution”, Germany:EFCTC.
24. Powell, R. L.(1997), “HFCs influence our health”, The Lancet Journal, Vol. 350, No. 9077, pp.556-559.
25. Person, A.(2001), “New developments in industrial refrigeration”, ASHRAE Journal, Vol. 43, pp. 54-58.
26. Powell, R. L.(2002), “CFC phase-out: have we met the challenge”, Journal of Fluorine Chemistry, Vol.114, pp. 237-250.
27. Park, K. J. and Jung, D.(2007), “Boiling heat transfer enhancement with carbon nano-tubes for refrigerants used in building air-condition”, Energy and Buildings, Vol. 39, pp. 1061-1064.
28. Saaty, T. L.(1980), “The Analytic Hierarchy Process:planning, priority setting, resource allocation”, New York:McGraw-Hill.
29. Walpole, R. E., et al.(1998), “Probabilityand Statistics”, New Jersey:Prentice Hall International Editions-6th.
30. Zurer, P. S.(1993), “Looming Ban on Production of CFCs to Substitutes”, Chemical and Engineering News, Vol. 71, No. 46, pp.12-18.
中文部份:
31. 丁崑田(2007),「資訊科技產業中數位家庭網路之發展研究」,碩士論文,中華大學科技管理研究所。
32. 牛頓雜誌(1994),「認識臭氧危機」,牛頓雜誌,第129期。
33. 方素惠(2003),「如何進行腦力激盪」,EMBA 文摘,第207期,頁126-131。
34. 王茂榮(2001),「台灣區冷凍空調產品電子交易市集之規劃研究」,碩士論文,交通大學科技管理研究所。
35. 吳漢雄、鄧聚龍、溫坤禮(1996),「灰色分析入門」,高立圖書公司。
36. 李吉祥(1998),「日本臭氧層保護對策」,蒙特婁議定書資訊速報,第28期。
37. 林振源、顏貽乙(1998),「HC冷媒特性與應用情形」,中國冷凍空調雜誌,頁77-82。
38. 林隆儀(1982),「創造性思考與腦力激盪法」,清華管理科學圖書中心,台北。
39. 洪義松(2007),「無線通訊產業未來發展趨勢之研究-個人無線區域網路為例」,碩士論文,中華大學科技管理研究所。
40. 胡耀祖(1998),「中華民國 CFC 與 HCFC 冷媒替代發展現況」,蒙特婁議定書資訊速報,第20期。
41. 連錦杰(1982),「冷凍原理」,五洲出版社,台北。
42. 陳姿方(2005),「國內全區行動電話業者經營績效之評估-模糊多準則評估方法之應用」,碩士論文,成功大學交通管理學系。
43. 陳光榮(2000),「建構台灣的國際綠色形象」,經濟情勢暨評論季刊,第6卷,第2期。
44. 陳詠林(1998),「臭氧層保護技術國際研討會摘要」,蒙特婁議定書資訊速報,第22期。
45. 陳星豪(1996),「高速鐵路形式評估準則集方法之研究---模糊與灰色決策理論之應用」,碩士論文,成功大學交通管理學系。
46. 郭俊麟(2007),「應用層級分析法與德菲法探討背光源替代技術之選擇評估-以筆記型電腦背光模組為例」,碩士論文,成功大學工程管理研究所。
47. 許守平(1998),「冷凍空調原理與工程」,全華科技圖書股份有限公司,台北。
48. 張坤昌(2004),「台灣地區互動電視市場未來發展影響因素之探討」,碩士論文,大葉大學工業關係學系。
49. 張紹勳(2001),「研究方法」,滄海書局。
50. 張慶暉(1997),「自然冷媒應用介紹」,蒙特婁議定書資訊速報,第10期。
51. 賀力行、林淑萍、蔡明春(2002),「統計學觀念、理論與方法」,前程圖書。
52. 黃元隆(2006),「RFID發展現況與推廣策略研究」,碩士論文,台北大學企業管理學系。
53. 黃正忠(2001),「企業永續發展之國際現況與趨勢」,社團法人中華民國企業永續發展協會論壇。
54. 曾照鈞(2007),「以技術系統觀點探討彩色濾光片產業發展」,碩士論文,中華大學科技管理研究所。
55. 彭巧綾(2006),「亞洲地區光纖照明產業未來發展趨勢之研究」,碩士論文,中華大學科技管理研究所。
56. 楊斐喬(2003),「SNAP Program 替代品表列名單」,蒙特婁議定書資訊速報,第88期。
57. 楊孝榮、李明政、趙碧華(1993),「社會統計學」,黎明文化事業股份有限公司,台北。
58. 楊平吉(1992),「腦力激盪法會議術」,臺華工商圖書出版公司,台北。
59. 鄧振源(2002),「計畫評估-方法與應用」,海洋大學運籌規劃與管理中心,基隆。
60. 鄧聚龍(1999),「灰色系統理論與應用」,高立圖書有限公司,台北。
61. 鄧振源、曾國雄(1989),「層級分析法(AHP)的內涵特性與應用」,中國統計學報,第27卷,第6期,頁 13707-13786。
62. 廖建順(2002),「2002 年全球壓縮機市場趨勢分析-冷媒課題」,冷凍空調&熱交換,第48期。
63. 鄭人維(2004),「磁氣冷凍材料未來發展潛力之研究」,碩士論文,中華大學科技管理研究所。
64. 劉中哲(2001),「冷媒於冷凍空調系統之應用介紹」,HCFC 替代冷媒技術研討會,高雄:經濟部工業局主辦。
65. 劉中哲(2000),「氨冷媒(R-717)介紹」,蒙特婁議定書資訊速報,第49期。
66. 劉伯村( 2004 ),「應用模糊多屬性決策法於博物館服務品質評估之研究」,碩士論文,南台科技大學工業管理研究所。
67. 蔡慶昇(2004),「我國國家創新體系對奈米科技產業發展影響之研究」,碩士論文,交通大學管理科學研究所。
68. 蔡勳雄、喻南華、郭博堯(2001),「全球臭氧層保護趨勢及我國管制措施建議」,國政研究報告,財團法人國家政策研究基金會,http://www.npf.org.tw/PUBLICATION/SD/090/SD-R-090-042.htm。
69. 賴嫈苓(1996),「SNAP Program 替代品表列名單(一)— 冷媒(上)」,蒙特婁議定書資訊速報,第3期。
70. 盧淵源( 1995 ),「以模糊多準則決策方法建立無人搬運車系統之設置評估模式」,國科會論文集,頁 134-138 。
校內:2109-08-05公開