| 研究生: |
李芳儀 Li, Fang-I |
|---|---|
| 論文名稱: |
銅含量對Sn-Ag-Cu無鉛銲錫振動破壞效應之特性 Effect of Cu content on the Vibration Fracture Behavior of Sn-Ag-Cu Solders |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 銲錫 、振動 |
| 外文關鍵詞: | solder, vibration, Sn-Ag-Cu |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將探討Cu含量對Sn-Ag-xCu(x=0~1.5wt%)無鉛銲錫合金之機械性質的影響,著重振動破壞特性方面。主要內容為Cu含量及振動測試條件對振動破壞特性,包括制振性及裂縫傳播的影響。
在微觀組織及拉伸測試方面,隨著Cu含量的增加,樹枝狀初晶Sn逐漸變細,並且在高Cu組成試片觀察到Cu6Sn5的晶出,此外抗拉強度及降伏強度亦隨之增加。
對數衰減率測試結果顯示,制振性的大小順序為:1.5CU>0.0Cu>0.5Cu>1.0Cu。此現象導致在固定出力值之振動測試條件下,起始偏移量大小順序為:1.0Cu>0.5Cu>0.0Cu>1.5Cu,且共振壽命的順序恰與起始偏移量相反,此結果顯示固定出力值時之振動壽命與制振性有密切關係。而在固定起始偏移量條件振動測試之實驗結果顯示,振動壽命隨著Cu含量的增加而增加,與試片變形阻抗(降伏強度)成正比。
觀察經過振動測試的各組試片表面發現樹枝狀初晶Sn產生層狀變形,且於高含Cu量的試片中晶出的Cu6Sn5在振動特性及裂縫傳播過程中均扮演重要的角色。
This study focused on the mechanical properties of Sn-Ag-xCu (x=0~1.5wt%), particularly the resonant vibration fracture behaviors. The main issues of this study were the effects of Cu content and vibration testing conditions on the resonant vibration properties, including damping capacity and rack growth.
Adding Cu will refine the β-Sn dendrites. Massive Cu6Sn5 compound particles appeared in the specimens with the Cu content higher than 1.0wt%. As for the results of tensile tests, the strength is getting higher with increasing Cu content.
The results also show that the logarithmic decrement of the specimens in a decreasing order is 1.5Cu, 0.0Cu, 0.5Cu, 1.0Cu. It could be also found that under constant vibration force conditions, the specimen with a higher damping capacity possesses a lower initial deflection and the greater vibration life. On the other hand, results of vibration tests with the settled initial deflection showed that vibration life increased with a higher Cu content. It is closely related to the plastic deformation resistance (yield strength).
The striated deformation feature can only be found in the Sn-rich dendrites, and the Cu6Sn5 which appeared in the higher Cu specimens plays an important role in absorbing vibration energy and crack propagating.
參考資料
1. S. S. Kang and A. K. Sarkhel, “Lead Free Solders for Electronic Packaging”, J. Elec. Mater., 1994, Vol. 23, PP. 701-707.
2. J. Glarzer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review”,
JElec. Master., 1994, Vol.23, pp.693-700.
3. J. Zhao, Y. Mutoh, Y. Miyashita, and S. L. Mannan, ”Fatigue Crack-Growth Behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi Lead-Free Solders.
4. S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, ”Nondestructive Detection of Fatigue Crack in PM 304 Stainless Stell by Internal Friction and Elasticity”, J. Master. Res., 1993, Vol.8, PP. 2216-2223.
5. S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Measurements”, Metal. Trans. A, 1995, Vol. 26A, pp. 1123-1127.
6. P. T. Vianco, “Solder Alloys: A Look at the Past, Present and Future”, Welding Journal, PP.45-49, 1997.
7. P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing”, JOM, July 1993,Vol. 45,No. 7,PP. 14-19.
8. H. Reid, D. Moynihan, J. Leiberman, and B. Bradley, “Toxic Lead Reduction Act of 1990”, 1990.
9. 殷翠梅, “Sn-Ag系無鉛銲錫之振動破壞特性探討”,國立成功大學材料科學及工程學系,碩士論文,民國90年。
10. M. Hansen, K. Anderko, “Constitution of Binary Alloys”, McGraw-Hill, New York, 1958.
11. J. Glqzer, “Metallurgy of Law Temperature Pb-Free Solders for Electronic Assembly”, International Materials Reviews, Vol. 40, No.2, pp.65-93
12.F. Hua, J. Glazer, ”Lead-Free Solders for Electronic Assembly, Design and Reliability og Solders and Solders interconnections”. In R. K. Mahidhara, D.R> Frear, S. M. L. Liaw, W. L. Winterbottom (Eds.), The Minerals, Metals and Materials Society, 1997, pp. 65-74.
13. M.McCormack, I. Artaki, S. Jin, A. M.Jackson, D. M. Machusak, G. W. Kammlott, D. W. Finley, “Wave Soldering with a Low Melting Point Bi-Sn alloy: Effects of Soldering Temperature and Circuit Board Finishes”, J. Electron. Mater., Vol.25, No. 7, 1996 pp.1128-1131.
14. M. E. Loomas, S. Vaynman, G. Ghosh, M. E. Fine, “Investigation of Multi-component Lead-Free Solders”, J. Elctron. Mater., Vol23, No.8, 1994, pp.741-746.
15. C. Melton, “The Effect od Reflow Process Variables on the Wetability of Lead-Free Solders”, JOM, Vol.45, No.7, July 1993, pp.33-35.
16. J. M. Ferriter and S. P. Redmond,” Specialty Solder in Macroelectronic Assembly”, Materials Engineering, Vol. 109, No. 8, 1992, pp.8-9.
17. J. S. Hwang, ”Solder Past in Electronics Packsging-Technology and Applications in surface Mount, Hybrid Circuits, and Component Assembly”, Van Nostrand Reinhold, New York, Chap. 4, 1992.
18. C. M. Chung, T. S. Lui, L. H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aging Sn-Zn Eutectic Solder”, J. Materials Science, 2002, Vol.37, PP. 191-195.
19. M. McCormack, S. Jin, H. S. Chen, and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, J. Elec. Master., 1994, Vol. 23, pp.687-690.
20. L. Ye, Z. Lai, L. Liu, and A. Tholen, “Recent Achievement in Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-Free Alloy by Adding Boron”, 1999 International Symposium on Advanced Packaging Materials, pp.262-267.
21. K. L. Lin and T.P. Liu, “High Temperature Oxidation of a Sn-Zn-Al Solder”. Oxidation f Metals, Vol. 50, No3/4, 1998, pp.255-267.
22. K. L. Lin , L. H. Wen and T. P. Liu,” The Microstructure of the Sn-Zn-Al Solder Alloys”, J. Electron. Mater., Vol.27, No. 3, 1998, pp.97-105.
23. A. Sebaoun, D. Vincent, and D. Treheux, “Ai-Zn-Sn Phase Diagram-Isothermal Diffusion in Ternary System”, Materials Science and Technology, Vol. 3, April 1987, pp.241-248.
24 I. E. Anderson, J. C. Foley, B. A. Cook and J. Harringa,”Alloying Effects in Near-Eutectic Sn-Ag-Cu Solder, Alloys for improved Microstructural Stability. Journal of Electronic Materials, Vol. 30, No.9, 2001.
25. ASM handbook, Hugh Baker, ASM International, Materials Park, Ohio, 1992, Vol. 3 Alloy Phase Diadrams.
26. M. McCormack and S. Jin, ”Progress in the Design of New Lead-Free Solder Alloys”, JOM, July 1993, Vol. 45, No. 7, pp. 36-40.
27. E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, 1994, Vol. 23, No. 8, pp. 709-713.
28. Y. Miyazawa and T. Ariga, “Influence of Aging Treatment on Microstructure and Hardness of Sn-(Ag, Bi, Zn) Eutectic Solder Alloys”, Master. Trans, JIM, 2001,Vol. 42, pp. 776-782.
29. Z. Mei and J. W. Morr, Jr., ”Superplastic Creep of Low Melting Point Solder Joints”, J. Electron. Mater., Vol. 21, No. 4, 1992, pp.401-407.
30. J. W. Morris, Jr., J. L. Freer Golestwin and Z. Mei, ”The Mechanics os solder Alloy Interconnects, Van Nostrand Reinhold, N. T., 1994,P.4.
31. R. J. K.Wassink, Soldering in Electronics, 2ndedn., Chap.7, 1989.
32. Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 1990, 2nd ed., pp.4-160.(34)
33. 莊強名,“無鉛化共晶銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,博士論文,民國90年。
34. Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 1990, 2nd ed., pp.4-160.
35. An Introduction to Mechanical Vibration, R. F. Stridel, Jr., John Wiley and Sons, Inc., New York, 1988, 3rd ed., pp. 96-226.
36. 振動與噪音的阻泥控制,孫慶鴻、張啟軍、姚慧珠編著,機械工業出版社,北京,1992,38-57頁。
37. Theory of Vibration, Volume II: Discrete and Continuous Systems, A. A. Shabana, Springer-Verlag, New York, 1991, pp. 1-40.
38. A. Grannato K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies”, J. Appl. Phys., 1956, Vol. 27, pp. 583-593.
39. J. Zhang, R. J. Perez and E. J. Lavernia, “Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials”, J. Mater. Sci., 1993, Vol. 28, PP. 2395-2404.
40. R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, “Damping Behavior of 6061Al/Gr Metal Matrix Composites”, Metall. Trans., 1993,Vol. 24A,pp. 701-711.
41. 洪佳和,“亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討” ,國立成功大學材料及工程學系,博士論文,民國90年。
42. Fatigue of Materials, S. Suresh, Cambridge University Press. New York, 1991, pp. 292.
43. Elementary Engineering Fracture Mechanics, D. Broek, Martinus Nijhoff Publishers, 1984, pp. 158-163.
44. S. Suresh, “Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks”, Metall. Trans., 1983, Vol. 14A, pp. 2375-2385.
45. A. J. Padkin, M. F. Brereton and J. E. King, “Fatigue Crack Growth in Two Phase Alloys”, Mater. Sci. Tech., 1987, Vol. 3, pp. 217-223.
46. S. Nishi and T. Kobayashi, “A Study on the Toughness of Aluminum Alloys Castings”, IMONO, 1974, Vol. 46, pp. 905-912 (in Japanese).
47. C. Masuda and Y. Tanaka, “Fatigue Properties and Fatigue Fracture Mechanisms of SiC Wiskers or SiC Particlate-Reinforced Aluminum Composites”, J. Mater. Sci., 1992, Vol. 27, pp. 413-422.
48. Y. Sugimura and S. Suresh, “Effects of SiC Content on Fatigue Crack Growth in Aluminum Alloys Reinforced with SiC Particles”, Metall. Trans. A, 1992, Vol. 23A, pp. 2231-2242.
49. D. M. Knowles and J. E. King, “Role of Reinforcement/Matrix Interfacial Strength in Fatigue Crack Propergation in Particulate SiC Reinforced Aluminum Alloy 8090”, Mater. Sci. Tech., 1992, Vol. 8, pp. 500-509.
50. O. Botstein, R. Arone and B. Shpigler, “Fatigue Crack Growth Mechanisms in Al-SiC Particulate Metal Matrix Composites”, Mater. Sci. Eng., 1990, Vol. A128, pp. 15-22
51. F. T. Lee, J. F. Major and F. H. Samuel, “Effect of Silicon Particles on the Fatigue Crack Growth Characteristics of Al-12 Wt Pct Mg-(0-0.02) Wt Pct Sr Casting Alloys”, Metall. Mater. Trans. A, 1995, Vol. 26A, pp. 1553-1570.
52. K. S. Kim, S.H. Huh, K. Sugunuma, ”Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys”, Materials Science and Engineering A333, 2002, pp.106-114.