簡易檢索 / 詳目顯示

研究生: 何興威
Ho, Hsing-Wei
論文名稱: 含絕熱裂紋之功能梯度條板熱問題
The Thermal Problem of a Functionally Graded Strip Containing an Insulated Crack
指導教授: 褚晴暉
Chue, Ching-Hwei
共同指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 105
中文關鍵詞: 絕熱裂紋功能梯度條板疊加原理高斯-切比雪夫積分公式熱通量強度因子
外文關鍵詞: Insulated crack, functionally graded strip, superposition principle, Gauss-Chebyshev integration formula, heat flux intensity factor
相關次數: 點閱:124下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中探討功能梯度條板中存在絕熱裂紋的問題,條板的兩邊界有兩種不同的邊界條件型式,第一種型式為條板的兩邊界有固定溫度,第二種型式為兩邊界有穩態熱通量通過。條板中的材料性質假設為指數函數型式,變化的方向和裂紋面垂直,且根據疊加原理(superposition principle),上述兩種邊界條件型式的問題均可各自分為條板中無裂紋的子問題,和條板中有裂紋存在的子問題進行討論。利用傅立葉轉換,可先將兩個子問題的溫度場求出,再將其代入混合邊界條件中得到一系列的奇異積分方程組,最後再以高斯-切比雪夫積分公式(Gauss-Chebyshev integration formula)和高斯-拉讓德求積法(Gauss-Legendre quadrature)進行運算,可求得裂紋周圍溫度場和熱通量強度因子的數值解。藉由探討條板邊界和材料非均質參數的變化對數值結果所造成的影響,可發現在固定溫度邊界條件下,裂紋周圍的溫度場分佈和熱通量強度因子的大小主要和條板中材料的熱阻有關;而在固定熱通量邊界條件下,裂紋周圍的溫度場和熱通量強度因子的大小明顯受到邊界效應的影響。本文中的研究結果,對於分析含裂紋的功能梯度條板,在高溫或需承受熱負載的環境中所產生的破壞問題有很大的助益。

    In this paper, the problem of an insulated crack in a functionally graded strip with the prescribed temperature or steady-state heat flux at boundaries is considered. The material properties is in exponential form and vary in the direction perpendicular to the crack surfaces. According to the superposition principle, the problem with each boundary condition can be separated into two sub-problems, and then be reduced into a system of singular integral equations by using Fourier transformation. In order to solve the problem numerically, the Gauss-Chebyshev integration formula and the method of Gauss-Legendre quadrature are used. Numerical results are presented graphically to illustrate the influence of strip boundaries and material inhomogeneity on the temperature distribution around the crack and the heat flux intensity factors at crack tips. With prescribed temperature at boundaries, the variation of temperature distribution and heat flux intensity factors are related to different thermal resistances of the strip. With steady-state heat flux at boundaries, the variation of temperature distribution and heat flux intensity factors are obviously affected by edge effect. Consequently, the results of this study may be helpful in understanding the phenomenon of fracture in FGM strip subjected to thermal boundary conditions.

    摘要 I Abstract II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 符號表 XVII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 5 第二章 平面熱傳導理論基礎與問題描述 7 2.1 傅立葉定律 7 2.2 熱擴散方程式 8 2.3 熱阻 11 2.4 問題描述 14 2.5 統御方程式 17 第三章 固定溫度邊界條件 19 3.1 邊界與連續條件 19 3.2 溫度場 20 3.3 積分方程式 26 3.4 溫度場解和積分方程式之驗證 28 3.5 積分方程式的數值型式 30 3.6 溫度場的數值型式 34 3.7 熱通量強度因子及其數值型式 39 3.8 高斯-切比雪夫積分公式 41 3.9 收斂性分析 42 3.10 溫度場結果與討論 43 3.11 熱通量強度因子結果與討論 53 第四章 固定熱通量邊界條件 59 4.1 邊界與連續條件 59 4.2 溫度場 60 4.3 積分方程式 64 4.4 溫度場解和積分方程式之驗證 65 4.5 積分方程式的數值型式 67 4.6 溫度場的數值型式 68 4.7 熱通量強度因子及其數值型式 70 4.8 高斯-切比雪夫積分公式 72 4.9 收斂性分析 72 4.10 溫度場結果與討論 74 4.11 熱通量強度因子結果與討論 82 第五章 結論 87 參考文獻 90 附錄A 93 附錄B 95 附錄C 97 附錄D 99 附錄E 103

    [1] 歐怡良,含嵌入式裂縫之功能梯度壓電材料面外問題破壞分析,國立成功大學機械工程學系博士論文,2006。
    [2] Koizumi, M., 1997, FGM activities in Japan. Composite Part B 28, 1-4.
    [3] 李言榮,惲正中,2003。材料物理學概論。五南圖書出版股份有限公司,台北市。
    [4] 黃大慶,振動床於弱振動下顆粒運動機制研究,國立中央大學機械研究所碩士論文,2005。
    [5] Sih, G. C., 1965. Heat conduction in the infinite medium with lines of discontinuities. ASME Journal of Heat Transfer 87, 293-298.
    [6] Tzou, D. Y., 1990. The singular behavior of the temperature gradient in the vicinity of a macrocrack tip. International Journal of Heat and Mass Transfer 33, 2625-2630.
    [7] Chao, C. K., and Chang, R. C., 1992. Thermal interface crack problems in dissimilar anisotropic media. Journal of Applied Physics 72, 2598-2604.
    [8] Noda, N., and Jin, Z. H., 1993. Thermal stress intensity factors for a crack in a strip of a functionally gradient material. International Journal of Solids and Structures 30, 1039-1056.
    [9] Jin, Z. H., and Noda, N., 1993. An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading. International Journal of Engineering Science 31, 793-806.
    [10] Jin, Z. H., and Noda, N., 1994. A crack in functionally gradient materials under thermal shock. Archive of Applied Mechanics 64, 99-110.
    [11] Jin, Z. H., and Mai, Y. W., 1996. Thermal fracture of functionally gradient ceramics. Journal of Applied Mathematics and Physics 47.
    [12] Choi, H. J., 2003. Thermoelastic problem of steady-state heat flow disturbed by a crack perpendicular to the graded interfacial zone in bounded materials. Journal of Thermal Stresses 26, 997-1030.
    [13] El-Borgi, S., Erdogan, F., and Hidri, L., 2004. A partially insulated embedded crack in an infinite funcionally graded medium under thermo-mechanical loading. International Journal of Engineering Science 42, 371-393.
    [14] El-Borgi, S., Hidri, L., and Abdelmoula, R., 2006. An embedded crack in a graded coating bounded to a homogeneous substrate under thermo-mechanical loading. Journal of Thermal Stresses 29, 439-466.
    [15] 蔡尚武,含任意方向裂縫之功能梯度熱彈性破壞力學問題,國立成功大學機械工程學系博士論文,2013。
    [16] Jiji, L. M., 2009. Heat conduction, Third edition, Springer-Verlag Berlin Heidelberg.
    [17] Carslaw, H. S., and Jaeger, J. C., 1959. Conduction of heat in solids, Second edition, Oxford: Clarendon Press.
    [18] Li, C., Weng, G. J., Duan, Z., and Zou, Z., 2001. Dynamic stress intensity factor of a functionally graded material under antiplane shear loading. Acta Mechanica 149, 1-10.
    [19] Muskhelishvili, N. I., 1992. Singular integral equations, Dover, New York.
    [20] Chiu, T. C., 2000. Buckling of graded coating - a continuum model. Ph.D. Thesis, Lehigh University.
    [21] Abramowitz, M., and Stegun, I. E., 1973. Handbook of mathematical functions, Dover, New York.
    [22] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1993. Numerical recipes in Fortran, The Art of Scientific Computing, Second Edition, Published by the Press Syndicate of the University of Cambridge.
    [23] Gerald, C. F., and Wheatley, P. O., 2004. Applied numerical analysis, Seventh edition, New York.

    下載圖示 校內:2017-07-15公開
    校外:2020-07-15公開
    QR CODE