簡易檢索 / 詳目顯示

研究生: 鍾家燁
Zhong, Jia-Ye
論文名稱: 於室內非直視性誤差下基於分散式天線的協同式定位
Distributed Antenna Aided Cooperative Positioning in Indoor Environments with NLOS Errors
指導教授: 楊竹星
Yang, Chu-Xing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 62
中文關鍵詞: 室內定位到達時間定位協作式定位室內分散式天線系統半正定規劃
外文關鍵詞: Indoor positioning, TOA positioning, Cooperative positioning, Indoor distributed antenna system, SDP
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近些年來,隨著通訊技術的發展以及越來越多的室內定位應用的出現,如何高效的實現精確的室內定位變成了一個重要的研究課題。第五代行動通訊網路(5G)被認為是能夠滿足絕大多數室內定位應用需求的一項技術。相較於室外定位,室內定位會受到更大的非直視性測量的影響。並且一些室外定位系統例如全球定位系統,因為嚴重的信號衰減,無法應用於室內環境中。一些典型的室內定位應用包括基於室內位置信息的廣告投放,倉儲和生產線商品的追蹤以及智慧泊車等等。
    本文提出了一個基於分散式天線的協同式定位框架來同時定位多個室內設備。其使用到達時間定位技術來確定用戶位置。將定位問題轉化成一個最小化定位誤差的極小化極大優化問題。並將此優化問題轉化成可以使用計算機計算的半正定規劃問題的標準形式。在實驗階段,我們使用了3GPP 提出的室內路徑損耗模型以及ITU 提出的室內可直視概率模型來貼合現實環境。實驗結果也證明了本文提出的方法相較於另外兩個協同式算法能夠實現更低的均方根誤差。

    In recent years, with the development of communication technologies and the emergence of indoor positioning applications, how to achieve accurate indoor positioning has become an important research topic. The fifth-generation (5G) cellular networks are expected to accommodate vertical-domain applications that may require precise indoor positioning. Compare to outdoor positioning, indoor positioning suffers from severe non line-of-sight (NLOS) effects. Due to the signal penetration loss, outdoor position systems like GPS can not be adopted for indoor positioning. Typical indoor positioning applications include indoor location-based advertisement, warehouse and assemble line tracking, smart parking, and so on.
    This paper proposes a distributed antenna-aided cooperation positioning framework to locate a group of indoor user equipments (UEs) at the same time. The time-of-arrival (TOA) method is adopted. One optimization problem is formulated to minimize the root mean square error (RMSE). In addition, the original minimax problem is transferred into the standard semidefinite programming (SDP) form, which can be solved by convex optimization algorithms. The indoor path loss proposed by 3GPP and LOS path probability models proposed by ITU are used in our simulations. Experimental results show that our proposed approach can outperform two benchmark algorithms in terms of RMSE.

    摘要i Abstract ii 致謝iii Table of Contents iv List of Tables vi List of Figures vii List of symbols viii Chapter 1 .Introduction 1 1.1 .Background ............1 1.2 .Motivation .............3 1.3 .Contribution ............4 1.4 .The organization of this thesis ........6 Chapter 2 .Related Work 7 2.1 .Basic positioning techniques .........7 2.2 .Cellular positioning ..........11 2.3 .Cooperative positioning ..........15 2.4 .Robust estimation for positioning .........18 Chapter 3 .System model 23 3.1 .Optimization algorithm for positioning ........23 3.1.1 .Basic least square estimation problem ......23 3.1.2 .Minimax estimation problem .......24 3.2 .System model ...........25 3.2.1 .System schematic diagram and some basic assumptions ...25 3.2.2 .The selection of balancing parameter .......27 3.3 .Optimization problem formulation ........30 3.3.1 .Positioning problem design ........30 3.3.2 .Constraints adding and relaxation ......34 Chapter 4 .Experiments and Evaluations 39 4.1 .Simulation parameter setting .........39 4.2 .Simulation results and analysis ........41 Chapter 5 .Conclusion 51 Appendix 54 References 59

    [1]F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and technologies,”IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019.
    [2]Y. Liu, X. Shi, S. He, and Z. Shi, “Prospective positioning architecture and technologies in 5G networks,”IEEE Network, vol. 31, pp. 115–121, November 2017.
    [3]J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and G. Seco-Granados, “Sur-vey of cellular mobile radio localization methods: From 1G to 5G,”IEEE Communica-tions Surveys & Tutorials, vol. 20, pp. 1124–1148, Second quarter 2018.
    [4]S. Alletto, R. Cucchiara, G. Del Fiore, L. Mainetti, V. Mighali, L. Patrono, and G. Serra,“An indoor location-aware system for an IoT-based smart museum,”IEEE Internet of Things Journal, vol. 3, pp. 244–253, April 2016.
    [5]P. Kirci, D. Zengin, B. Karademir, and M. Erzen, “Localization based mobile appli-cation for shopping malls,” in2017 Electric Vehicles International Conference (EV),pp. 1–4, 2017.
    [6]L. Gogolák, S. Pletl, and D. Kukolj, “Neural network-based indoor localization in WSNenvironments,”Acta Polytechnica Hungarica, vol. 10, pp. 221–235, 01 2013.
    [7]Z. Lin, T. Lv, and P. T. Mathiopoulos, “3-D indoor positioning for millimeter-wavemassive MIMO systems,”IEEE Transactions on Communications, vol. 66, no. 6,pp. 2472–2486, 2018.
    [8]C. Meng, Z. Ding, and S. Dasgupta, “A semidefinite programming approach to source localization in wireless sensor networks,”IEEE Signal Processing Letters, vol. 15,pp. 253–256, 2008.
    [9]Xin Wang, Zongxin Wang, and B. O’Dea, “A TOA-based location algorithm reducing the errors due to non-line-of-sight (NLOS) propagation,”IEEE Transactions on Vehicular Technology, vol. 52, no. 1, pp. 112–116, 2003.
    [10]Guo-Lin Sun and Wei Guo, “Bootstrapping m-estimators for reducing errors due tonon-line-of-sight (NLOS) propagation,”IEEE Communications Letters, vol. 8, no. 8,pp. 509–510, 2004.
    [11]K. W. Cheung, W. K. Ma, and H. C. So, “Accurate approximation algorithm for TOA-based maximum likelihood mobile location using semidefinite programming,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2,pp. ii–145, May 2004.
    [12]Bluetooth Special Interest Group (SIG), “Bluetooth core specification 5.2,” 2020.
    [13]IEEE, “Next Generation Positioning Overview and Challenges,” Nov 2014.
    [14]S. Gezici, Zhi Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, andZ. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects forfuture sensor networks,”IEEE Signal Processing Magazine, vol. 22, pp. 70–84, July2005.
    [15]Y. Zhuang, L. Hua, L. Qi, J. Yang, P. Cao, Y. Cao, Y. Wu, J. Thompson, and H. Haas,“A survey of positioning systems using visible LED lights,”IEEE Communications Surveys & Tutorials, vol. 20, pp. 1963–1988, third quarter 2018.
    [16]S. Fang, C. Wang, T. Huang, C. Yang, and Y. Chen, “An enhanced ZigBee indoor positioning system with an ensemble approach,”IEEE Communications Letters, vol. 16,pp. 564–567, April 2012.
    [17]B. S. Çiftler, A. Kadri, and I. Güvenc, “IoT localization for bistatic passive UHF RFID systems with 3-D radiation pattern,”IEEE Internet of Things Journal, vol. 4, pp. 905–916, Aug 2017.
    [18]E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,”IEEE Communications Magazine, vol. 52, pp. 186–195,February 2014.
    [19]R. Schmidt, “Multiple emitter location and signal parameter estimation,”IEEE Trans-actions on Antennas and Propagation, vol. 34, pp. 276–280, March 1986.
    [20]R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational in variance techniques,”IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37,pp. 984–995, July 1989.
    [21]Z. Lin, T. Lv, and P. T. Mathiopoulos, “3-d indoor positioning for millimeter-wave mas-sive mimo systems,”IEEE Transactions on Communications, vol. 66, no. 6, pp. 2472–2486, 2018.
    [22]Shidong Zhou, Ming Zhao, Xibin Xu, Jing Wang, and Yan Yao, “Distributed wireless communication system: a new architecture for future public wireless access,”IEEE Communications Magazine, vol. 41, no. 3, pp. 108–113, 2003.
    [23]V. Savic and E. G. Larsson, “Fingerprinting-based positioning in distributed massive MIMO systems,” in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), pp. 1–5, 2015.
    [24]C. Loyez, M. Bocquet, C. Lethien, and N. Rolland, “A distributed antenna system for indoor accurate WiFi localization,”IEEE Antennas and Wireless Propagation Letters,vol. 14, pp. 1184–1187, 2015.
    [25]R. Amiri, F. Behnia, and M. A. Maleki Sadr, “Positioning in MIMO radars based on constrained least squares estimation,”IEEE Communications Letters, vol. 21, no. 10,pp. 2222–2225, 2017.
    [26]Z. He, Y. Ma, and R. Tafazolli, “Accuracy limits and mobile terminal selection scheme for cooperative localization in cellular networks,” in 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2011.
    [27]C.Bockelmann, N.Pratas, H.Nikopour, K.Au, T.Svensson, C.Stefanovic, P.Popovski,and A. Dekorsy, “Massive machine-type communications in 5G: physical and MAC-layer solutions,”IEEE Communications Magazine, vol. 54, pp. 59–65, Sep. 2016.
    [28]H. Cramer,Mathematical Methods Of Statistics. Princeton university press, 1946.
    [29]K. Yang, L. Jiang, and Z. Luo, “Efficient semidefinite relaxation for robust geolocation of unknown emitter by a satellite cluster using TDOA and FDOA measurements,”in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), pp. 2584–2587, 2011.
    [30]L. Chen, K. Yang, and X. Wang, “Robust cooperative Wi-Fi fingerprint-based indoor localization,”IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1406–1417, 2016.
    [31]Q. Sun, Y. Tian, and M. Diao, “Cooperative localization algorithm based on hybrid topology architecture for multiple mobile robot system,”IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4753–4763, 2018.
    [32]Y. Zhu, Y. Zhang, F. Yan, W. Xia, S. Xing, Y. Wu, and L. Shen, “TOA-based cooperative localization with los/nlos probability in wireless networks,” in GLOBECOM 2017 -2017 IEEE Global Communications Conference, pp. 1–6, 2017.
    [33]R. M. Vaghefi and R. M. Buehrer, “Cooperative localization in NLOS environments using semidefinite programming,”IEEE Communications Letters, vol. 19, no. 8,pp. 1382–1385, 2015.
    [34]R. W. Ouyang and A. K. Wong, “An enhanced TOA-based wireless location estimation algorithm for dense NLOS environments,in 2009 IEEE Wireless Communications and Networking Conference, pp. 1–6, 2009.
    [35]I. Güvenç, C.-C. Chong, F. Watanabe, and H. Inamura, “NLOS identification andweighted least-squares localization for UWB systems using multipath channel statis-tics,”EURASIP J. Adv. Signal Process, vol. 2008, Jan. 2008.
    [36]R. B. Myerson,Game theory. Harvard university press, 2013.
    [37]S. Zhang, S. Gao, G. Wang, and Y. Li, “Robust NLOS error mitigation method for toa-based localization via second-order cone relaxation,”IEEE Communications Letters,vol. 19, no. 12, pp. 2210–2213, 2015.
    [38]G. Wang, S. Zhang, H. Chen, and Y. Li, “Robust TOA-based cooperative localization under NLOS conditions,” in 2018 24th Asia-Pacific Conference on Communications(APCC), pp. 418–421, Nov 2018.
    [39]X. Shi, B. D. O. Anderson, G. Mao, Z. Yang, J. Chen, and Z. Lin, “Robust localization using time difference of arrivals,”IEEE Signal Processing Letters, vol. 23, no. 10,pp. 1320–1324, 2016.
    [40]“Study on channel model for frequencies from 0.5 to 100 GHz,” Technical Report (TR)38.901, 3rd Generation Partnership Project (3GPP), 06 2020. Version 16.1.0.
    [41]“Guidelines for evaluation of radio interface technologies for IMT-Advanced,” Techni-cal Report (TR) M.2135-1, International telecommunication union (ITU), 12 2010.
    [42]“WINNER II Channel Models,” Technical Report (TR) D1.1.2 V1.2, Information soci-ety technologies, 02 2008.
    [43]R. M. Vaghefi and R. M. Buehrer, “Cooperative sensor localization with nlos mitigation using semidefinite programming,” in 2012 9th Workshop on Positioning, Navigation and Communication, pp. 13–18, 2012.
    [44]P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite programming based algorithms for sensor network localization,”ACM Trans. Sen. Netw., vol. 2, p. 188–220,May 2006.
    [45]S. Venkatraman, J. Caffery, and H.-R. You, “A novel toa location algorithm using LOS range estimation for NLOS environments,”IEEE Transactions on Vehicular Technology,vol. 53, no. 5, pp. 1515–1524, 2004.
    [46]K. Yu and Y. J. Guo, “Improved positioning algorithms for non line-of-sight environments,”IEEE Transactions on Vehicular Technology, vol. 57, no. 4, pp. 2342–2353,2008.
    [47]Z. Su, G. Shao, and H. Liu, “A soft-minimum method for NLOS error mitigation in TOA systems,” in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), pp. 1–4,IEEE, 2016.
    [48]Z. Ping, L. Jian, W. Yan, and W. Qiao, “Cooperative localization in 5g networks: Asurvey,”ICT Express, vol. 3, no. 1, pp. 27–32, 2017.
    [49]M. Martinez-Ingles, D. P. Gaillot, J. Pascual-Garcia, J. Molina-Garcia-Pardo, M. Lien-ard, and J. Rodríguez, “Deterministic and experimental indoor mmw channel modeling,”IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1047–1050, 2014.
    [50]Qualcomm, “5G NR mmWave outdoor and indoor deployment strategy,” May. 2018.
    [51]J. Hammersley,Monte carlo methods. Springer Science & Business Media, 2013.
    [52]M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,version 2.1,” 2014.
    [53]L. N. Trefethen,Spectral methods in MATLAB, vol. 10. Siam, 2000.
    [54]S. Boyd, S. P. Boyd, and L. Vandenberghe,Convex optimization. Cambridge university press, 2004.
    [55]F. Zhang,The Schur complement and its applications, vol. 4. Springer Science & Busi-ness Media, 2006.
    [56]F. Alizadeh and D. Goldfarb, “Second-order cone programming,”Mathematical programming, vol. 95, no. 1, pp. 3–51, 2003.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE