| 研究生: |
張學文 Jhang, Shiao-Wun |
|---|---|
| 論文名稱: |
價鍵漲落系統CeMn2Si2的異常現象 Anomalous behaviors of the valence fluctuation system CeMn2Si2 |
| 指導教授: |
田聰
Tien, Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 價鍵漲落 、磁阻 、自旋玻璃 |
| 外文關鍵詞: | valence fluctuation, magnetoresistance, spin glass |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗是對混和價鍵系統CeMn2Si2-like (CeMn2.16Si1.84)做電性、磁性和熱性磁的研究, 我們可以在樣品CeMn2.16Si1.84上發現,當樣品放在外加高磁場(H=120 kOe)且低溫的環境下,會產生一個異常大的正磁阻,而樣品溫度在21K時,其磁阻產生高達548%的最大值,且當溫度低於21K時,磁阻值會隨著溫度的下降而變小。在磁性測量方面,當在外加低磁場(H < 100 Oe)下,樣品CeMn2.16Si1.84的溫度低於240K時,我們可以觀察到產生熱磁不可逆(thermomagnetic irreversibility,TMI)的現象,隨著外加磁場的增加,使的TMI效應慢慢變小且消失。在外加高磁場的環境下,因為樣品CeMn2.16Si1.84為混和價鍵系統,所以我們可以推測因為高磁場的存在,使的4f電子能階位移至費米能階附近,造成磁阻在低溫高磁場下有異常大的值存在,且樣品的TMI效應可能源自於鐵磁分量依附在反鐵磁有序結構或者自旋玻璃相。
The electrical, magnetic and thermal properties of the valence fluctuation system CeMn2Si2-like (CeMn2.16Si1.84) were studied. In a magnetic field of 12 T, as the temperature decreases the magnetoresistance of CeMn2.16Si1.84 becomes positive and reaches an unusually large value 548% at 21 K. Whereas, below 21 K, the magnetoresistance decreases as the temperature decreased. The anomalously high magnetoresistance might arise from the shifted f-band over the Fermi level by a magnetic field. In a low magnetic field (H < 100 Oe), large thermomagnetic irreversibility (TMI) was observed below ~ 240 K. The TMI behavior decreases with the increasing H, and disappears with the H large enough. This behavior can be explained by the antiferromagnetic component pinned in the overall ferromagnetic ordering structure, or spin-glass phases.
[1] J. A. Fernandez-Baca, Peggy Hill, B. C. Chakoumakos, and Naushad Ali, J. Appli. Phys. 79, 5398 (1996)
[2] F. Steglich, J. Aart, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and J. Schäfer, Phys. Rev. Lett. 43, 1892 (1979)
[3] G. R. Stewart, Rev. Mon. Phys. 56, 755 (1984)
[4] B. C. Sales and R. Viswanathan, Low Temp. Phys. 23, 449 (1976)
[5] G. Liang, I. Perez, D. DiMarzio, and M. Croft, D. C. Johnston, N. Anbalagan and T. Mihalism, Phys. Rev. B 37, 5970 (1988)
[6] S. Siek, A. Szytuła, and J. Leciejewicz, Phys. Status Solidi A 46, K101 (1978)
[7] C. Ammarguellat, M. Escorne, A. Mauger, E. Beaurepaire, M. F. Ravet, G. Krill, F. Lapierre, P. Haen, and C. Godart, Phys. Status Solidi B 143, 159 (1987)
[8] Milan V. Lalić, José Mestnik-Filho, Artur W. Carbonari and Rajendra N. Saxena, J. Phys.: Condens. Matter 16, 6685 (2004)
[9] E.M. Levin, Physica B 230-232, 130, (1997)
[10] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz K. and Samwer, Phys. Rev. Lett. 71 , 2331 (1993)
[11] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen 1994 Science 264, 413 (1994)
[12] A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171-8199 (1997)
[13] H. Fujii, T. Okamoto, T. Shigeoka, and N. Iwata, Solid State Commun. 53, 715 (1985)
[14] G. Liang, F. Yen, S. Keith, and Croft, J. Magn. Magn. Mater. 314, 52 (2007)
[15] G. Liang and F. Yen, J. of Appl. Phys. 103, 07B719 (2008)
[16] G. Venturini, R. Welter, E. Resouche, B. Malaman, J. Magn. Magn. Mater. 150, 197 (1995)
[17] A. W. Carbonari, J. Mestnik-Filho, R. N. Saxena, and M. V. Lalic, Phys. Rev. B 69, 144425 (2004)
[18] A. W. Carbonari, J. Mestnik-Filho, R. N. Saxena, and M. V. Lalic, Phys. Rev. B 69, 144425 (2004)
[19] E. V. Sampathkumaran, P. L. Paulose, and R. Mallik, Phy. Rev. B 54, R3710 (1996)
[20] T. FujiwaraA, H. FujiiA,and T. Shigeoka, Physica B 281&282, 161 (2000)
[21] R. Mallik, E. V. Sampathkumaran, and P. L. Paulose, Appl. Phys. Lett. 71, 20 2385 (1997)
[22] J. A. Mydosh, Spin Glasses : An Experimental Introduction (Taylor & Francis, London, 1993)
[23] C. Tien, J. J. Lu, and L. Y. Jang, Phy. Rev. B 65, 214416 (2002)