| 研究生: |
賴蔡明 Lai, Tsai-Ming |
|---|---|
| 論文名稱: |
應用微機電系統製造技術在微型毛細式泵吸環路散熱系統之研究發展 Development of MEMS Based Micro Capillary Pumped Loop System |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 蒸氣導槽 、儲槽 、毛細式泵吸環路 、微機電製程加工技術 、蒸發器 、冷凝器 |
| 外文關鍵詞: | vapor groove, condenser, evaporator, MEMS Fabrication, reservoir, Capillary Pumped Loop |
| 相關次數: | 點閱:133 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
毛細式泵吸環路(CPL)是一種雙相熱傳移熱裝置(two-phase heat transport device),本研究主要是以微機電製程加工技術(MEMS Fabrication)整合毛細式泵吸環路的熱傳機制來設計並製作一系列的微型毛細式泵吸環路,類似於熱管(Heat Pipe)的設計,應用微觀尺度下液體表面張力的效應驅動微管道內冷卻液體從CPL內部蒸發器中的蒸氣導槽流至冷凝器,藉以冷卻高發熱密度(High heating density)的設備及高階電子元件(如高階CPU或是GaAs晶片),並觀察及討論其熱傳特性、導出Micro CPL環路的熱傳界限。
初步實驗結果證明影響微型毛細式泵吸環路的操作參數有: 環路啟動方法、環路操作溫度、微環路真空度、儲槽設計及環路乾化(deprime)限制,由結果可以分析出微型MCPL晶片在穩定狀況下,系統工作液體充填率達80%以上、系統抽低壓及增加儲槽設計時,可以將晶片蒸發器表面溫度控制在一定範圍內而不至於有急遽的溫度變動,經由實驗可以找到實驗設計的較大熱傳量及較低熱阻值,經由實驗視流觀察透明環路也可證明蒸氣與液體能夠分開傳送。實驗證明Micro CPL具有優越熱傳性的潛力,經由簡化設計可以符合日益增加的散熱需求,期能成為未來散熱設計趨勢之一。
Capillary Pumped Loop(CPL) is a sort of “two-phase heat transport device”, in this study, it presents MEMS fabrication to integrate the mechanism of CPL to both design and manufacture a set of Micro Capillary Pumped Loop(MCPL). It seems like the design of “Heat Pipe”, it applies the effect of liquid surface tension in micro scale to drive cooled liquid from vapor grooves in MCPL flowing to condenser. It can be used to cool high heating density equipments and high-level electronic devices, such as high-level CPU, GaAs wafer etc. By observing and discussing MCPL’s heat transferring characteristics, thermal limits in Micro CPL can be inferred.
From the preliminary experimental result, it proves that there are several operating parameters affecting MCPL, such as loop start-up techniques, loop operating temperature, level of vaccum in micro loop, reservoir design and loop deprime limitation. It is analyzed that MCPL chips can control surface temperature within the range on evaporator without sharp variation in the steady-state. When both the filling ratio of working fluid in the system is up to 80%, connecting with vaccum pump and reservoir to lower pressure in the system, it can also control surface temperature on evaporator. From the experiments, larger thermal conduction quantity and lower thermal resistance can be found. With experimental observation of flow visualization in the transparent micro loop, it also prove that both vapor and liquid can be transmitted separately. Micro CPL has the superior potential in heat transferring, by simplifying the design, MCPL will tally with increasing demand in heat transferring technology. In the future, MCPL will undoubtedly be one of the trends in designing heat sink devices.
參考文獻
1 http://www.electronics-cooling.com/
2 http://www.pcfin.com.tw/
3 http://www.ccic.com.tw/
4 A. Faghri, “Heat Pipe Science and Technology,” Taylor & Francis,
Washington DC., 1995.
5 http://www.jpl.nasa.gov/adv_tech/thermal/LHP.htm
6 http://www.berkeley.edu/
7 R.S.Gaugler, 1994, “Heat Transfer Devices, ” Patent U.S.2, 350, 348
8 Ku,J., Ottenstein, L, Kobel, M., Rogers, P and T. Kaya,"Temperature Oscillations in Loop Heat Pipe Operation," STAIF 2001, American Institute of Physics, Albuquerque, New Mexico, February 11-14, 2001.
9 F.J.Stenger, NASA TM X-1310, 1966.
10 Nikitkin M., and Cullimore B., “CPL and LHP Technologies: What are the Differences, What are the similarities?”, SAE Paper 981587, 1998.
11 Q.Liao and T.S.Zhao, “Evaporative Heat Transfer in a Capillary Structure Heated by a Grooved Block”, AIAA Journal of Thermophysics and Heat Transfer, Vol. 13(1), pp. 126-133, 1999.
12 Mohammed Hamdan, Frank M. Gerner, “Loop Heat Pipe(LHP) Develoment by Utilizing Coherent Porous Silicon(CPS) Wicks”, Development of Mechanical, Industrial, and Nuclear Engineering.
13 LaClair T., and Mudawar I., “Thermal Transients in Capillary Evaporator Prior to the Initiation of Boiling”, Vol.43, pp3937-3952, 2000.
14 日本熱管技術協會編, “熱管理論技術實務(Heat Pipe Technology)”, 復漢出版社, 1990.
15 AAVID Engineering Inc., “OASIS Heat Dissipation System Technical Data and Specifications”, 1993.
16 Y.Joo, K. Dieu and C.J.Kim, “Fabrication of Monolithic Microchannels for IC Chip Cooling”, IEEE Micro Electro Mechanical Systems Workshop, Amsterdam, The Netherlands, 1995, pp. 362-367.
17 L.Lagorce, D.Kercher, J.English, O.Brand, A.Glezer and M.Allen, ”Batch-Fabricated Microjet Coolers for Electronic Components”, ISHMI International Symposium on Microelectronics, p.494, Philadelphia, Pennsylvania, October 14-16, 1997.
18 http://www.cmu.edu/
19 T. Zeng and G. Chen. “Energy Conversion in Heterostructures for thermionic Cooling, ” Microscale Thermophysical Engineering, Vol. 4. 2000, pp. 39-50.
20 T.P.Cotter, “Principles and Prospects for Micro Heat Pipe”, Proc. Int. Heat Pipe Conf., Tsukuba, Japan, pp. 328-335, 1984.
21 J.Kirshberg, K. Yerkes, D. Trebotich and D. Lipmann, “Cooling Effect of a MEMS Based Micro Capillary Pumped Loop for Chip-Level Temperature Control”, ASME MEMS-Vol.2, 2000.
22 K.Pettigrew, J.Kirshberg, K. Yerkes, D. Trebotich and D. Liepmann, “Performance of MEMS based micro capillary pumped loop for chip-level temperature control”, MEMS 2001 : The 14th IEEE International Conference on Micro Electro Mechanical Systems, Switzerland, 2001.
23 http://www.cs.wright.edu/people/faculty/sthomas/
24 J. T. Dickey and G. P. Peterson, “Experimental and Analytical Investigation of a Capillary Pumped Loop,” J. Thermophysics and Heat Transfer, Vol. 8, No. 3, pp. 602-607, 1994.
25 A. Faghri, Heat Pipe Science and Technology, Taylor and Francis, New York, 1995.
26 A.Bejan, John Wiely, “Convective Heat Transfer”, New York, Chap. 10, 1984.
27 R.D Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Company, New York, 1984.
28 B. A. Cullimore, “Start Up Transients in Capillary Pumped Loops”, AIAA Paper No. 91-1374, 1991.
29 陳品志, “毛細式泵吸環路之實驗研究” , 國立清華大學工程與系統科學系博士論文, 中華民國九十年七月。
30 Busse, C. A. ,”Theory of the Ultimate Heat Transfer Limit of Cylindrical Heat Pipe”, Int. J. Heat Mass Transfer, Vol.16, No. 1, 1973.
31 Hsu, Y. Y. “On the Size Range of Active Nucleation Cavities on a Heat Surface”, J. Heat Transfer, Trans. ASME, August, 1962.
32 J. Pohner and D. Antoniuk, “Recent Enhancements to Capillary Pumped Loop Systems”, AIAA Paper No. 91-1375, 1991.
33 廖仁瑞, (2002) , “微機電技術製作之白金觸媒反應系統的研發”, 國立成功大學航空太空工程學系碩士論文。
34 呂宗行, 林郁欣, ”噴墨頭噴印精進技術於三維快速成型精密製造應用”, 2003精密機械與製造技術研討會,May 30-June 1, 2003, (NSC 91-2212-E-006-124).
35 呂宗行, 林郁欣, ”新型噴墨頭製造及其診斷技術於三維快速成型精密製造應用”, 中華民國燃燒學會第十四屆學術研討會, March 27, 2004.
36 莊達人, “VLSI 製造技術”, 四版, 高立圖書, 台北縣, 2001.
37 F. S. Tse, and I. E. Morse, Measurement and Instrumentation in Engineering, Marcel Dekker, Inc, 1989.