| 研究生: |
呂佳玲 Lu, Chia-Ling |
|---|---|
| 論文名稱: |
幽門桿菌誘導不同的MAPK反應調節兒童和成人原發性胃上皮細胞之間的劉易斯抗原和移生密度 Different H. pylori-induced MAPK responses regulate Lewis antigen and colonization density between child and adult primary gastric epithelial cells |
| 指導教授: |
楊燿榮
Yang, Yao-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 幽門桿菌 、黏著因子 、劉易斯抗原 、促分裂原活化蛋白激酶 、益生菌 |
| 外文關鍵詞: | H. pylori, adhesion, Lewis antigen, MAPK, probiotics |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景與目的
幽門桿菌感染會引發慢性胃炎、胃潰瘍、胃腺癌,已被世界衛生組織認定為第一級致癌物。而胃裡的劉易斯B和唾液酸劉易斯X抗原則是扮演了幽門桿菌移植的受體。實驗室以前的研究發現,幽門桿菌感染的成年人比感染的兒童,在胃體部具有顯著性較高的細菌密度和劉易斯B強度。此外還發現,在小鼠中的胃唾液酸劉易斯X表現隨著年齡的增長而增加。另外研究揭示促分裂原活化蛋白激酶(MAPK)路徑可能調控了糖蛋白的合成。因此,本篇宗旨是想釐清在幽門桿菌感染之後是否促分裂原活化蛋白激酶路徑調控劉易斯抗原的表現,而造成了在小孩與成人之間不同的幽門桿菌移生密度。
結果
首先,我們的目的是確認在幽門桿菌感染的小孩及大人的原發性胃表皮細胞在感染之後是否有劉易斯抗原表現、幽門桿菌移生、細胞激素以及促分裂原活化蛋白激酶(MAPK)活性的差異的不同。所以利用人類胃胎兒上皮(HSFE)細胞和人類胃永生上皮(GES-1)初級胃表皮細胞來模擬小孩和成人的原發性胃上皮細胞。每一組別都會感染不同時間週期的幽門桿菌。結果顯示在成人相較於小孩的胃表皮細胞有顯著性較高而且較早的幽門桿菌移生強度表現。並且幽門桿菌誘導較高的劉易斯B表現強度和唾液酸劉易斯X分佈比例在成人胃表皮細胞,相較於小孩胃表皮細胞。而且在小孩胃表皮細胞,幽門桿菌誘導較高的IL-6 和 IL-8 表現,此外幽門桿菌誘導的MAPK活性在GES-1和HSFE是不一樣的。這些結果顯示劉易斯抗原調控的幽門桿菌移生,和細胞激素,MAPK反應一樣,在小孩與大人的胃裡是不同的。
第二,為了要確認MAPK訊號路徑對劉易斯抗原表現及幽門桿菌移生有何影響而利用了特定的MAPK單元的抑制劑及SiRNA敲除。結果顯示MAPK siRNA 轉染,導致降低了成人細胞的幽門桿菌移生密度,但是增加了小孩細胞的幽門桿菌移生密度,尤其是在轉染JNK siRNA的組別。 而且,利用JNK siRNA 確實也增加了GES-1的劉易斯B表現,但降低HSFE的劉易斯B和唾液酸劉易斯X抗原表現。 相同的結果也發現在磷酸化JNK抑制劑的實驗,而效果隨著劑量增加而增加。 這些結果說明JNK磷酸化活性會藉由調控劉易斯抗原表現使GES-1幽門桿菌移生密度增加,但是會降低在小孩細胞上。 並且,IHC染色結果發現幽門桿菌誘導的磷酸化JNK分數在成人胃的切片檢體顯著性的高於小孩。這臨床研究再次證實了幽門桿菌誘導的MAPK訊號的差異性在幽門桿菌感染的小孩與大人的胃檢體。
第三,我們探討前處理與後處理益生菌是否可以降低幽門桿菌誘導的MAPK訊號和幽門桿菌移生密度。結果發現,預先處理比菲德氏菌而不是乳酸桿菌會明顯降低JNK的磷酸化在GES-1和HSFE細胞上。 然而,在GES-1細胞上,預先處理比菲德氏菌和乳酸桿菌都會增加幽門桿菌移生密度在一小時及六小時。而對HSFE沒有幽門桿菌移生密度的影響。 此外,後處理比菲德氏菌和乳酸桿菌都會降低GES-1幽門桿菌移生密度,HSFE沒有。然而,在GES-1的抑制效果是藉由其他因子,而不是藉由調控路易斯抗原。
結論
幽門桿菌感染會誘導不同細胞激素、MAPK、劉易斯抗原表現在GES-1和HSFE上,這些不同可能導致感染後GES-1幽門桿菌密度會高於HSFE。而較高的磷酸化JNK活性可能貢獻了部分較高的劉易斯抗原表現和幽門桿菌密度在GES-1上,相較於HSFE。最後,雖然預先處理比菲德氏菌可以顯著性的降低JNK的磷酸化在GES-1和HSFE上,後處理,而不是預處理比菲德氏菌和乳酸桿菌可以抑制幽門桿菌移生在GES-1上。然而,抑制效果並不是藉由調控路易斯抗原。
Background and Purpose
Helicobacter pylori causes chronic gastritis, peptic ulcers, and adenocarcinoma and is classified as a group 1 carcinogen by the WHO. Gastric Lewis b (Leb) and sialyl‐Lewis x (sLex) antigens serve as the initiated and persistent receptors for H. pylori colonization, respectively. In our previous studies have shown that the H. pylori‐infected adults had significantly higher bacterial density and Leb intensity than infected children. Furthermore, the gastric sLex expressions in mice increased by age. Besides, studies have disclosed MAPK pathway may control glycoproteins synthesis. Therefore, we aim to validate whether the MAPK signal pathway mediate Lewis antigens expression after H. pylori infection and cause the different colonization density between children and adults.
Results
First, we aimed to identify whether H. pylori infection in child and adult primary gastric epithelium have different Lewis antigens expression, H. pylori colonization, cytokines production, and MAPK activity. Thus we applied “Human Stomach Fetal Epithelium (HSFE) cells” and “The SV40-immortalized human normal gastric epithelial cell line (GES-1)” to mimic “child” & “adult” primary gastric epithelium. Each group was challenged with H. pylori (MOI100) at various time periods. The results showed H. pylori colonization intensity was significantly higher and was earlier achieved full expression in GES-1 than in HSFE cells. Furthermore, H. pylori induced a higher Leb intensity and sLex percentage in GES-1 than in HSFE cells. The H. pylori-induced IL-6 and IL-8 expressions in HSFE cells were largely higher than in GES-1 cells. Moreover, H. pylori‐induced MAPK phosphorylation were different between HSFE and GES‐1. These results indicate that different Lewis antigen-mediated gastric H. pylori colonization, cytokines production, and MAPK responses between the stomach of children and adults.
Second, to identify the impacts of MAPK signaling pathway on Lewis antigen expressions and H. pylori colonization, the specific MAPK subunits’ inhibitors and SiRNA knockdown were used. The results showed that MAPK siRNA transfection decreased H. pylori colonization in GES-1, but increased in HSFE, particular in JNK siRNA knockdown. Using siRNA of JNK knockdown JNK protein decreased Leb expression in GES-1, but increased Leb and sLex expression in HSFE. The same results were shown in p-JNK inhibitor experiment with a dose-dependent manner. These results indicated that p-JNK activity increased H. pylori colonization in GES-1, but decreased in HSFE through regulating Lewis antigen expressions. Furthermore, H. pylori-induced p-JNK intensity scores were significantly higher in adults’ gastric biopsies than those from children by IHC staining. The clinical studies confirmed again that differences of H. pylori-induced MAPK signals between gastric samples biopsies from H. pylori-infected adults and children.
Third, we investigated whether pretreatment and posttreatment of probiotics could decrease H. pylori-induced MAPK activity and colonization density. The results found that pretreatment of B. latis but not L. acidophilus significantly reduced the JNK phosphorylation in both GES-1 and HSFE cells. However, pretreatment of both B. latis and L. acidophilus increased H. pylori colonization density at 1 and 6 hours in GES-1 but did not affect colonization density in HSFE cells. Furthermore, posttreatment of both B. latis and L. acidophilus decreased H. pylori colonization density in GES-1 but not HSFE. However, the inhibitory effect through factors other than regulating Lewis antigens in GES-1 cells.
Conclusion
H. pylori infection induced different cytokines, MAPKs, and Lewis antigens expression between GES-1 and HSEE cells, which may cause a higher H. pylori colonization density in GES-1 had more than HSFE. The higher JNK phosphorylation activity in GES-1 cells may contribute in part to the higher Lewis antigen and colonization density than in HSFE. Finally, although pretreatment of B. latis significantly reduced the JNK phosphorylation in both GES-1 and HSFE cells, posttreatment but not pretreatment of both B. latis and L. acidophilus could reduce H. pylori colonization in GES-1 cells. However, the inhibitory effect was not through regulating Lewis antigen expression.
Allison, C. C., et al. 2009 Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J Immunol 183(12):8099-109.
Amieva, M. R., and E. M. El-Omar 2008 Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 134(1):306-23.
Arthur, J. S., and S. C. Ley 2013 Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13(9):679-92.
Atherton, J. C. 2006 The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol 1:63-96.
Atsriku, C., et al. 2015 Metabolism and disposition of a potent and selective JNK inhibitor [14C]tanzisertib following oral administration to rats, dogs and humans. Xenobiotica 45(5):428-41.
Bassaganas, S., et al. 2015 Inflammatory cytokines regulate the expression of glycosyltransferases involved in the biosynthesis of tumor-associated sialylated glycans in pancreatic cancer cell lines. Cytokine 75(1):197-206.
Beydoun, T., et al. 2015 Subconjunctival injection of XG-102, a JNK inhibitor peptide, in patients with intraocular inflammation: a safety and tolerability study. J Ocul Pharmacol Ther 31(2):93-9.
Calvet, X., et al. 2013 Diagnosis and epidemiology of Helicobacter pylori infection. Helicobacter 18 Suppl 1:5-11.
Carvalho, A. S., et al. 2010 Differential expression of alpha-2,3-sialyltransferases and alpha-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. Int J Biochem Cell Biol 42(1):80-9.
Chen, T. P., et al. 2015 Helicobacter Pylori Infection is Positively Associated with Metabolic Syndrome in Taiwanese Adults: a Cross-Sectional Study. Helicobacter 20(3):184-91.
Chen, X., et al. 2012 Antagonistic activities of lactobacilli against Helicobacter pylori growth and infection in human gastric epithelial cells. J Food Sci 77(1):M9-14.
Chu, Y. T., et al. 2010 Invasion and multiplication of Helicobacter pylori in gastric epithelial cells and implications for antibiotic resistance. Infect Immun 78(10):4157-65.
Colomb, F., et al. 2014 TNF induces the expression of the sialyltransferase ST3Gal IV in human bronchial mucosa via MSK1/2 protein kinases and increases FliD/sialyl-Lewis(x)-mediated adhesion of Pseudomonas aeruginosa. Biochem J 457(1):79-87.
Etukudo, O. M., E. E. Ikpeme, and E. E. Ekanem 2012 Seroepidemiology of Helicobacter pylori infection among children seen in a tertiary hospital in Uyo, southern Nigeria. Pan Afr Med J 12:39.
Ferreccio, C., et al. 2007 Gastric cancer is related to early Helicobacter pylori infection in a high-prevalence country. Cancer Epidemiol Biomarkers Prev 16(4):662-7.
Freire de Melo, F., et al. 2012 A regulatory instead of an IL-17 T response predominates in Helicobacter pylori-associated gastritis in children. Microbes Infect 14(4):341-7.
Freire de Melo, F., et al. 2014 Th1 immune response to H. pylori infection varies according to the age of the patients and influences the gastric inflammatory patterns. Int J Med Microbiol 304(3-4):300-6.
Fujisawa, T., et al. 1999 Changes in seroepidemiological pattern of Helicobacter pylori and hepatitis A virus over the last 20 years in Japan. Am J Gastroenterol 94(8):2094-9.
Graham, D. Y. 2015 Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology 148(4):719-31 e3.
Harris, P. R., et al. 2013 Role of childhood infection in the sequelae of H. pylori disease. Gut Microbes 4(6):426-38.
Harris, P. R., et al. 2008 Helicobacter pylori gastritis in children is associated with a regulatory T-cell response. Gastroenterology 134(2):491-9.
Ilver, D., et al. 1998 Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279(5349):373-7.
Kao, C. Y., et al. 2015 Genome Sequence and Annotation of Helicobacter pylori Strain Hp238, Isolated from a Taiwanese Patient with Mucosa-Associated Lymphoid Tissue Lymphoma. Genome Announc 3(1).
Keates, S., et al. 1999 Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag+ and cag- Helicobacter pylori. J Immunol 163(10):5552-9.
Kim, E. H., et al. 2011 Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis. Cancers (Basel) 3(3):3018-28.
Kim, J. M., et al. 2008 Conjugated linoleic acids produced by Lactobacillus dissociates IKK-gamma and Hsp90 complex in Helicobacter pylori-infected gastric epithelial cells. Lab Invest 88(5):541-52.
Lin, F. C., et al. 2012 RUNX3-mediated transcriptional inhibition of Akt suppresses tumorigenesis of human gastric cancer cells. Oncogene 31(39):4302-16.
Lin, W. H., et al. 2009 Antagonistic activity of spent culture supernatants of lactic acid bacteria against Helicobacter pylori growth and infection in human gastric epithelial AGS cells. J Food Sci 74(6):M225-30.
Liu, Y., et al. 2008 Study on the relationship between Helicobacter pylori in the dental plaque and the occurrence of dental caries or oral hygiene index. Helicobacter 13(4):256-60.
Liu, Z., et al. 2012 Helicobacter pylori CagA inhibits the expression of Runx3 via Src/MEK/ERK and p38 MAPK pathways in gastric epithelial cell. J Cell Biochem 113(3):1080-6.
Mahdavi, J., et al. 2002 Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297(5581):573-8.
Malaty, Hoda M., et al. 2002 Age at acquisition of Helicobacter pylori infection: a follow-up study from infancy to adulthood. The Lancet 359(9310):931-935.
Mamay, C. L., et al. 2003 An inhibitory function for JNK in the regulation of IGF-I signaling in breast cancer. Oncogene 22(4):602-14.
Mentis, A., P. Lehours, and F. Megraud 2015 Epidemiology and Diagnosis of Helicobacter pylori infection. Helicobacter 20 Suppl 1:1-7.
Meyer-ter-Vehn, T., et al. 2000 Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem 275(21):16064-72.
Pachathundikandi, S. K., N. Tegtmeyer, and S. Backert 2013 Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 4(6):454-74.
Padro, M., et al. 2011 Regulation of glycosyltransferases and Lewis antigens expression by IL-1beta and IL-6 in human gastric cancer cells. Glycoconj J 28(2):99-110.
Pearson, G., et al. 2001 Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153-83.
Razavi, A., et al. 2015 Comparative Immune Response in Children and Adults with H. pylori Infection. J Immunol Res 2015:315957.
Sakarya, S., and N. Gunay 2014 Saccharomyces boulardii expresses neuraminidase activity selective for alpha2,3-linked sialic acid that decreases Helicobacter pylori adhesion to host cells. APMIS 122(10):941-50.
Segawa, S., et al. 2011 Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway. PLoS One 6(8):e23278.
Sheu, B. S., et al. 2010 Helicobacter pylori colonization of the human gastric epithelium: a bug's first step is a novel target for us. J Gastroenterol Hepatol 25(1):26-32.
Shirasawa, Y., et al. 2010 Bifidobacterium bifidum BF-1 suppresses Helicobacter pylori-induced genes in human epithelial cells. J Dairy Sci 93(10):4526-34.
Slomiany, B. L., and A. Slomiany 2002 Disruption in gastric mucin synthesis by Helicobacter pylori lipopolysaccharide involves ERK and p38 mitogen-activated protein kinase participation. Biochem Biophys Res Commun 294(2):220-4.
Slomiany, B, L., et al. 2013 Role of epidermal growth factor receptor transactivation in the amplification of Helicobacter pylori-elicited induction in gastric mucosal expression of cyclooxygenase-2 and inducible nitric oxide synthase. OA Inflammation 01;1(1):1.
Venet, F., A. Lepape, and G. Monneret 2011 Clinical review: flow cytometry perspectives in the ICU - from diagnosis of infection to monitoring of injury-induced immune dysfunctions. Crit Care 15(5):231.
Wang, Q., et al. 2008 Cytokine-induced epithelial permeability changes are regulated by the activation of the p38 mitogen-activated protein kinase pathway in cultured Caco-2 cells. Shock 29(4):531-7.
Wang, S., et al. 2014 Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways. PLoS One 9(5):e97523.
Wang, Y. C. 2014 Medicinal plant activity on Helicobacter pylori related diseases. World J Gastroenterol 20(30):10368-82.
Xia, B., et al. 2005 Trends in the prevalence of peptic ulcer disease and Helicobacter pylori infection in family physician-referred uninvestigated dyspeptic patients in Hong Kong. Aliment Pharmacol Ther 22(3):243-9.
Yang, Y. J., et al. 2012 Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFkappaB pathways. BMC Microbiol 12:38. 2014 Susceptibility to pediatric Helicobacter pylori infection correlates with the host responses of regulatory and effector T cells. Pediatr Infect Dis J 33(12):1277-82.
Yang, Y. J., and B. S. Sheu 2012 Probiotics-containing yogurts suppress Helicobacter pylori load and modify immune response and intestinal microbiota in the Helicobacter pylori-infected children. Helicobacter 17(4):297-304.
Yang, Y. J., et al. 2008 Helicobacter pylori infection can change the intensity of gastric Lewis antigen expressions differently between adults and children. J Biomed Sci 15(1):29-36.
Yang, Y. J., et al. 2009 Persistent H. pylori colonization in early acquisition age of mice related with higher gastric sialylated Lewis x, IL-10, but lower interferon-gamma expressions. J Biomed Sci 16:34.