| 研究生: |
吳律萱 Wu, Lu-Hsuan |
|---|---|
| 論文名稱: |
台灣抗憂鬱藥品使用與中風風險的關係 Association between Antidepressants Use and the Stroke Risk in Taiwan |
| 指導教授: |
高雅慧
Kao, Yea-Huei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 抗憂鬱藥 、中風 、自控病例系列研究 、傾向得分匹配 、年齡 、暴露時間 |
| 外文關鍵詞: | Antidepressants, stroke, self-controlled case-series study, propensity score matching, age, exposure time |
| 相關次數: | 點閱:125 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景:
1.抗憂鬱藥的不良反應:
抗憂鬱藥被廣泛用於治療重度憂鬱症(major depressive disorder),雙極性疾病(bipolar disorder),焦慮症,情感障礙(affective disorder),或減輕神經性疼痛。但在抗憂鬱藥產生良好的療效的同時也會帶來許多副作用,最常見包括嗜睡、噁心、口乾、便秘、體重增加,和性功能障礙。近年來,一些發生率低但嚴重的藥物不良反應,如中風與腸胃道出血,也被提出討論。
2.中風與抗憂鬱藥的研究:
2014年一項meta-analysis研究報告顯示,使用SSRI的病人,其缺血性中風(OR, 1.48; 95%CI, 1.08-2.02; I2 = 83.9%)和出血性中風(OR, 1.32; 95%CI, 1.02-1.71; I2 = 74.9%)的風險都會增加。但此項meta-analysis所納入的文章都非隨機對照研究,且文章之間的異質性(heterogeneity)很高。而自2014年後除了一項世代研究發現使用SSRI的病人其中風的比例較高(p <0.01)之外;其他研究則顯示使用抗憂鬱藥並不會顯著增加中風風險。因此,究竟使用抗憂鬱藥是否與中風風險相關,至今仍存在著爭議。
3.先前研究的干擾因子與限制:
過去的研究皆為世代研究或病例對照研究等非隨機觀察性研究中,如何處理干擾因子(confounding factors)一直是重要的議題。由於過去大多數研究是比較暴露組與非暴露組的風險,使得兩組之間年齡、心血管疾病、糖尿病、中風病史、使用抗凝血劑,與吸煙和飲酒等的分佈也可能不同。這些問題都會造成研究結果的偏差。另外,超過半數的研究納入的是抗憂鬱藥的現行使用者(prevalent users),如果風險隨時間變化,可能會引起嚴重的偏差。另外也有超過三分之一的研究並未將曾經發生過中風的病人排除,也會導致這些研究所感興趣的結果「中風」的發生可能會受先前中風的影響。
4.年齡重要嗎?
大多數病人初次使用抗憂鬱藥都是在輕年或中年時期,但過去只有少數研究曾討論不同年齡的抗憂鬱藥使用者的中風風險,而在這之中,多數研究都將受試者限制在患有重度憂鬱症的病人,或者僅針對使用SSRI的病人進行分析。在研究設計中限制了病人使用抗憂鬱藥的適應症或使用的抗憂鬱藥品種類,會導致這些研究存在著外推性(generalizability)的問題。再者,某些研究並未將使用抗憂鬱藥之前曾經中風的病人從研究中排除,使得這些研究的結果可能被高估。至今,年齡對於抗憂鬱藥使用和中風風險關係的影響仍未知,由於預期年輕人在中風後會比老年人有更長的存活時間,所以長期照護會形成醫療保健系統和照護人員(通常是家人)的巨大負擔,因此我們需要進一步的研究設計來闡明不同年齡的抗憂鬱藥使用者的中風風險。
5.使用抗憂鬱藥後多久會發生中風?
使用抗憂鬱藥後,通常需要至少4週才能達到治療效果。然而,值得注意的是,藥物不良反應可能會在開始治療後的短時間內出現。過去只有一項研究報告指出,使用SSRI後中風的病人,約20%是發生在初始治療後的6個月內。先前的研究發現,病人在接受抗憂鬱藥治療後1至3週內,體內的血小板功能以及腦血流量會明顯的降低;然而對於使用抗憂鬱藥後多快會發生中風仍然未知。
6.自我控制病例系列(self-controlled case-series, SCCS)研究設計:
SCCS研究只納入有發生事件的病人,並針對病人個體內(within individual)藥品暴露與非暴露期間進行風險的比較,提供了另一種流行病學方法來評估暴露與結果之間的關聯。由於是病人的自我比較,因此不會隨著時間推移而變動的潛在干擾因子,例如遺傳因子、性別、生活習慣、居住地、社會經濟地位、潛在疾病的嚴重性,甚至無法測量的干擾因子都可以被移除。
7.傾向分數配對(propensity score matching, PSM)世代研究設計:
傾向評分(propensity score)的概念是透過每個病人的可觀察變項來衡量特定個體接受治療的機率。PSM研究設計的主要目的是平衡治療組和未治療組中的干擾因子,因此可以更準確地估算治療效果。
研究目的:
首先我們使用臺灣全民健康保險研究資料庫(National Health Insurance Database, NHID)進行了SCCS研究,以評估抗憂鬱藥使用與中風風險之間的關聯,然後進行了PSM世代研究,以驗證我們在SCCS研究中的發現。在此研究中,我們還描述了在不同年齡層和暴露時間下,抗憂鬱藥與中風風險之間的關係。
研究方法:
研究1 – SCCS研究
1.設計與設置:
此SCCS研究使用臺灣NHID,從2010年7月1日至2015年6月30日納入初次使用抗憂鬱藥治療的病人(≥18歲),且有因首次中風而住院的病人。
2.抗憂鬱藥與中風的定義:
初次使用抗憂鬱藥的定義為在NHID中有ATC代碼N06A之抗憂鬱藥處方記錄的病人,並排除在初次服用抗憂鬱藥前36個月內有使用抗憂鬱藥的病人。我們透過住院病人資料庫(inpatient database)中的主要或次要診斷為ICD-9-CM 430-434來確認病人發生中風事件,並排除首次中風前36個月內曾經有中風診斷的病人,和首次中風前30天內診斷為腦損傷的病人(ICD-9-CM:800-804,850-854)。
3.暴露和風險期:
風險期(risk period)定義為抗憂鬱藥治療開始到結束或改藥的期間,而基線期(baseline period)則為未接受抗憂鬱藥治療的時間。我們將研究的主要觀察期設置為自初次接受抗憂鬱藥治療之日起的180天內。
4.統計分析:
使用條件Poisson回歸計算發病率比率(Incidence rate ratios, IRRs),以估計相較於基線期,病人在風險期發生第一次中風的風險。計算結果以95%的置信區間表示。
5.分層分析:
此SCCS研究會針對中風類型,性別,抗憂鬱藥類別,病人是否患有重度憂鬱症、失智症、或精神分裂進行分層分析。此外,我們也將病人分為三個年齡層進行分析,包括(1)18~44歲、(2)45~64歲和(3)≥65歲。最後,我們把風險期分為五個暴露期風險區間進行分析,包括(1)1~7天、(2)8~14天、(3)15~28天、(4)29~90天,和(5)91~180天。
研究2 – PSM世代研究:
1.設計與設置:
此研究與SCCS研究同樣使用了臺灣NHID,納入從2010年7月1日至2015年6月30日,初次使用抗憂鬱藥的病人(≥18歲)。首次開立抗憂鬱藥處方的日期則定義為指標日期(index date)。
2.抗憂鬱藥與中風的定義:
初次使用抗憂鬱藥的病人和中風的定義就如同SCCS研究中的定義。在此PSM世代研究中,我們排除指標日期前36個月內診斷為中風的病人,以及首次中風前30天內診斷為腦損傷的病人(ICD-9-CM:800-804,850-854)。本研究的觀察期(observation period)設定為從指標日期起算的180天時間內,且將在研究的觀察期內換用其他抗抑鬱藥、停用抗憂鬱藥、死亡,或中風的患者列為設限(censor)。
3.統計分析:
使用Cox比例風險回歸(Cox proportional hazards regression)模型分析抗憂鬱藥使用與中風風險之間的關係。此分析採用雙尾(two-sided)統計檢定,在0.05的顯著性水準下進行,統計結果以95%的置信區間呈現。
4.分層分析:
分層分析以及年齡層分析的變項與分組皆與SCCS研究相同。此外,此研究也採用SCCS研究對風險期的時間區分,將抗憂鬱藥的暴露時間分成五個暴露期風險區間,使用二項式廣義估計方程式(binomial generalized estimating equation)進行分析。
研究結果:
在SCCS研究中共納入了53,510名初次使用抗憂鬱藥的病人。其中超過一半(56.26%)是男性,平均年齡為69歲。我們發現在初次使用抗憂鬱藥後的180天內中風風險會增加(IRRs, 1.18; 95% CI, 1.13-1.23),並且此風險在初次用藥後的7天內最高(IRRs, 3.91; 95% CI, 2.60-5.88)。在PSM世代研究中,納入了1,072,922名初次使用抗憂鬱藥的病人和1,072,922名匹配的未使用抗憂鬱藥者。在初次使用抗憂鬱藥的病人中,年輕人佔37.25%,成年人佔38.53%,老年人佔24.23%。我們發現使用抗憂鬱藥的中風風險是未使用者的3.01倍(95% CI, 2.79-3.24)。另外,初次使用抗憂鬱藥的年輕病人,其中風風險比未使用者高3.68倍(95% CI, 2.56-5.29),而在成年人中則是3.08倍(95% CI, 2.65-3.58),然後在老年人是2.42倍(95% CI, 2.22-2.63)。在年輕人中與使用TCA相關的中風風險最高(HR, 4.14; 95%CI, 2.39-7.15)。 在成年人(HR, 4.14; 95%CI, 2.24-7.67)和老年人(HR, 2.90; 95%CI, 1.89-4.47)中,則是與使用SNRI相關的中風風險最高。而在暴露時間方面,與SCCS的結果相似,為初次使用抗憂鬱藥治療後7天內中風風險最高(OR, 3.91; 95% CI, 2.60-5.88)。
研究結論:
成人使用抗憂鬱藥會增加中風的風險,年齡越輕,風險越高。在年輕人中建議避免選擇TCA做為首選藥物,至於在成年人和老年人則建議避免選擇SNRI做為首選藥物。另外,須注意初次接受抗憂鬱藥的一周內,發生中風的風險最高。本研究的結果在SCCS研究和傾向得分匹配世代研究中得到了一致的結論,為臨床治療的病人安全性提供了寶貴而重要的信息。
BACKGROUND:
1.Adverse reaction of antidepressant:
Antidepressants are widely used to ameliorate major depressive disorder (MDD), bipolar disorder, anxiety, affective disorder, and even relieve neuropathic pain. However, the antidepressants can also bring many unpleasant side effects while patients are getting well control of their diseases. The most common side effects include drowsiness, nausea, dry mouth, constipation, weight gain, and sexual dysfunction. However, some other adverse reactions with lower incidence but higher severity, such as stroke and gastrointestinal bleeding has been reported recently.
2.Previous studies of the stroke and antidepressant:
One meta-analysis study in 2014 reported that serotonin reuptake inhibitors (SSRI) users had higher risks in both ischemic stroke (OR, 1.48; 95 % CI, 1.08 to 2.02; I2=83.9%) and hemorrhagic stroke (OR, 1.32; 95 % CI, 1.02 to 1.71; I2=74.9%). However, the studies included in the meta-analyses were not randomized control studies, and likely to bias the analysis due to heterogeneity. Since 2014, except for one cohort study that reported SSRI users had a significantly (p<0.01) higher stroke rate (6.7%) than nonusers (2.8%), other articles found that the risk of stroke was not associated with antidepressant use. Whether the stroke risk is associated with use of antidepressants remains controversial.
3.Confounding factors in previous study:
Because the previous research was all non-random observational studies and compared exposures with non-exposures, the differences in age distribution, cardiovascular disease, diabetes, previous stroke, anticoagulant use, smoking and alcohol drinking were deemed inherited between the two groups. These confounding factors would bias the research results. In addition, more than half of the studies included prevalent users of antidepressants, which could introduce substantial bias if risk varied with time. More than one third of the studies did not exclude patients who had stroke history, and the events of interested in these studies (stroke) may be affected by previous stroke.
4.Does age matter?
Most patients initially used antidepressant are at young to middle-age, but few studies discussed the stroke risk for antidepressants users at different ages. Previous studies only enrolled participants with MDD or those who used SSRI, which did not reflect a broader spectrum of clinical indications and various choices of antidepressants and would lead to a poor generalizability. Besides, studies included patients who had stroke prior to antidepressant use would likely overestimate the stroke risk from recurrent episodes. Due to the longer life expectancy of young patients after stroke, long-term care will become a heavy burden for the health care system and the caregivers. Further study is needed to clarify the stroke risk of antidepressant users at different ages.
5.How soon does stroke occur after using of antidepressants?
Treatment with antidepressants usually takes at least 4 weeks to achieve therapeutic effect. It is worth noting that patients may experience adverse reactions within a short period after initial treatment. Only one study found that about 20% of strokes among SSRI users occurred within 6 months after initial treatment. On the other hand, previous studies reported that antidepressants decreased platelet function and cerebrovascular blood flow within 1 to 3 weeks after treatment. Therefore, how soon a stroke will occur after antidepressants use needs further investigation.
6.The self-controlled case-series (SCCS) study design:
The SCCS study is a case-only design which makes comparisons within individual of patients who experience both the event and the exposure, and provides an alternative epidemiological approach to assess the association between an exposure and an outcome. Since the comparison is between different experiences in the same patient, potential confounders that are fixed over time, such as genetic disposition, gender, location, socioeconomic status, individual frailty, severity of underlying disease, and even extend to undetected confounders, can be eliminated.
7.The propensity score matching (PSM) cohort study design:
The concept of a propensity score is to measure the probability of a particular individual receiving treatment through the patient's own observable variables. The main purpose of the PSM is to balance the confounding variables in the treated group and the untreated group, so the treatment effectiveness can be estimated more accurately.
OBJECTIVES:
We first conducted a SCCS study using Taiwan National Health Insurance Database (NHID) to assess the association between antidepressant use and stroke risk, and employed a PSM cohort study to verify our findings in the SCCS study. We also delineated the association between antidepressants and stroke risk at different age groups and exposure time.
METHOD:
Study 1 – SCCS design
1.Design and settings:
We conducted a SCCS study using Taiwan NHID and enrolled antidepressant new users (≥18 years) from 1 July 2010 to 30 June 2015, who were hospitalized for first stroke event.
2.Definition of antidepressant and stroke:
Antidepressant new users were identified by a prescription record for antidepressants as ATC code N06A in NHID. Participants were excluded if they had any antidepressants during the 36 months prior to the first antidepressants prescription. Stroke was identified by the primary or secondary diagnosis in the inpatient database as ICD-9-CM 430-434 during the study period. Patients diagnosed with stroke within 36 months and head injuries (ICD-9-CM: 800-804, 850-854) within 30 days before the first stroke were excluded.
3.Exposure and risk period:
The risk period was defined by the calendar days between the start of antidepressant therapy and the end or change of antidepressant therapy, while the baseline period included all unexposed time. We set the main observation period of the study to 180 days from the date of the first antidepressant treatment.
4.Statistical analysis:
Incidence rate ratios (IRRs) were calculated using conditional Poisson regression to estimate the stroke risk during risk periods by compared to baseline periods within each individual. The results were presented as 95% confidence intervals.
5.Subgroup analysis:
Subgroup analyses were performed for stroke types, genders, whether patients had MDD, schizophrenia, and dementia. We divided the patients into three age groups for analysis, including (1) young adults (18~44 years old), (2) adults (45~64 years old), and (3) elderly (≥ 65 years old). We also divided the risk period into five exposure windows in the analysis, including (1) 1~7 days, (2) 8~14 days, (3) 15~28 days, (4) 29~90 days, and (5) 91~180 days.
Study 2 – PSM Cohort design
1.Design and settings:
The study also used Taiwan NHID and enrolled antidepressant new users (≥18 years) from 1 July 2010 to 30 June 2015. The date of first prescription was defined as the index date.
2.Definition of antidepressant and stroke:
Antidepressant new users and stroke were defined as in the SCCS study. Patients diagnosed with stroke within 36 months before the index date and those who diagnosed with head injuries (ICD-9-CM: 800-804, 850-854) within 30 days before the first stroke were excluded. The observation period was set as a 180-day time from the index date, and censored patients who changed to other antidepressants, discontinued exposure, died, and have the outcome of stroke during the observation period.
3.Statistical analysis:
Cox proportional hazards regression models were used to explore the association between antidepressant use and the stroke risk. All statistical tests were two-sided, conducted at the significance level of 0.05, and reported using 95% confidence intervals.
4.Subgroup analysis:
Subgroup and age groups analysis were as in the SCCS study. We also defined the five exposure windows as in the SCCS study for the binomial generalized estimating equation analysis.
RESULT:
In the SCCS study, a total of 53,510 antidepressant new users with stroke were identified. More than half (56.26%) of them were male, and the average age was 69 years old. We found that antidepressants exposure increased the stroke risk (IRRs, 1.18; 95% CI 1.13 to 1.23) within 180 days, and the highest within 7 days after initial antidepressants treatment (IRRs, 3.91; 95% CI, 2.60 to 5.88). In the PSM cohort study, 1,072,922 antidepressants users and 1,072,922-matched nonusers were included. Among antidepressant new users 37.25% were young adults, 38.53% were adults, and 24.23% were elderly. We found the stroke risk was 3.01 times higher (95% CI, 2.79 to 3.24) among antidepressants users than nonusers. Among young adults, the stroke risk was 3.68 times (95% CI, 2.56 to 5.29) higher in antidepressant new users than those nonusers, and 3.08 times (95% CI, 2.65 to 3.58) among adults, then 2.42 times (95% CI, 2.22 to 2.63) among the elderly. The risk of stroke was also highest within 7 days after initial antidepressants treatment (OR, 3.91; 95% CI, 2.60 to 5.88). In addition, we found the TCA was relatively high-risk in young adults (HR, 4.14; 95% CI, 2.39 to 7.15) for initial treatment, while SNRI treatment had highest stroke risk in adults (HR, 4.14; 95% CI, 2.24 to 7.67) and elderly (HR, 2.90; 95% CI, 1.89 to 4.47).
CONCLUSION:
The use of antidepressants in adults increased the risk of stroke, and the younger the age, the higher the risk. The stroke events were most likely to occur within one week after receiving the initial antidepressant treatment. TCA were associated with the highest risk of stroke in young adults, while receiving SNRI were found to be highest risk in adults and elderly. The results of the study were consistent through a SCCS study and a PSM cohort study, which would be robust to inform clinical decision in selecting antidepressants and safety monitoring.
1. Abbing-Karahagopian V, Huerta C, Souverein PC, et al. Antidepressant prescribing in five European countries: application of common definitions to assess the prevalence, clinical observations, and methodological implications. European journal of clinical pharmacology 2014; 70(7): 849-57.
2. Wu CS, Shau WY, Chan HY, Lee YC, Lai YJ, Lai MS. Utilization of antidepressants in Taiwan: a nationwide population-based survey from 2000 to 2009. Pharmacoepidemiology and drug safety 2012; 21(9): 980-8.
3. Teter CJ, Kando JC, Wells BG. Major Depressive Disorder. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach, 10e. New York, NY: McGraw-Hill Education; 2017.
4. David N, Simon D, Blanca MB-A. Psychotropic drugs. In: Morris B, Pankaj S, Fraz M, Peter B, editors. Clinical pharmacology: Elsevier; 2018. p. 324-64.
5. David Nutt SD, Blanca M. Bolea-Alamanac. Psychotropic drugs. In: Morris Brown PS, Fraz Mir, Peter Bennett, ed. Clinical Pharmacology. 12 ed. London, UK: Elsevier; 2018: 324-64.
6. Schatzberg AF. Trazodone: a 5-year review of antidepressant efficacy. Psychopathology 1987; 20 Suppl 1: 48-56.
7. Pary R, Tobias C, Lippmann S. Fluoxetine: prescribing guidelines for the newest antidepressant. Southern medical journal 1989; 82(8): 1005-9.
8. Montgomery SA, Kasper S. Comparison of compliance between serotonin reuptake inhibitors and tricyclic antidepressants: a meta-analysis. International clinical psychopharmacology 1995; 9 Suppl 4: 33-40.
9. Penn E, Tracy DK. The drugs don't work? antidepressants and the current and future pharmacological management of depression. Therapeutic advances in psychopharmacology 2012; 2(5): 179-88.
10. Gelenberg AJ, Freeman MK, Markowitz JC, et al. Practice Guideline for the Treatment of Patients with Major Depressive Disorder (3rd edn)2010. (accessed.
11. Arroll B, Elley CR, Fishman T, et al. Antidepressants versus placebo for depression in primary care. The Cochrane database of systematic reviews 2009; (3): Cd007954.
12. Arroll B, Macgillivray S, Ogston S, et al. Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: a meta-analysis. Annals of family medicine 2005; 3(5): 449-56.
13. Skanland SS, Cieslar-Pobuda A. Off-label uses of drugs for depression. European journal of pharmacology 2019; 865: 172732.
14. Chee KY, Tripathi A, Avasthi A, et al. International study on antidepressant prescription pattern at 40 major psychiatric institutions and hospitals in Asia: A 10-year comparison study. Asia-Pacific psychiatry : official journal of the Pacific Rim College of Psychiatrists 2015; 7(4): 366-74.
15. Gomez-Lumbreras A, Ferrer P, Ballarin E, et al. Study of antidepressant use in 5 European settings. Could economic, sociodemographic and cultural determinants be related to their use? Journal of affective disorders 2019; 249: 278-85.
16. Mojtabai R, Olfson M. National trends in long-term use of antidepressant medications: results from the U.S. National Health and Nutrition Examination Survey. The Journal of clinical psychiatry 2014; 75(2): 169-77.
17. Misganaw A, Melaku YA, Tessema GA, et al. National disability-adjusted life years (DALYs) for 257 diseases and injuries in Ethiopia, 1990-2015: findings from the global burden of disease study 2015. Population health metrics 2017; 15: 28.
18. Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England) 2012; 380(9859): 2197-223.
19. IHME. Findings from the Global Burden of Disease Study 2017. United States of America: Institute for Health Metrics and Evaluation / The LANCET; 2018.
20. Malhi GS, Mann JJ. Depression. Lancet (London, England) 2018; 392(10161): 2299-312.
21. NHRI/HPA. National Health Interview Survey in Taiwan 2013. Taiwan: The National Health Research Institutes of Taiwan / Health Promotion Administration of Taiwan / Ministry of Health and Welfare of Taiwan, 2017.
22. Stubbs B, Vancampfort D, Veronese N, et al. Depression and physical health multimorbidity: primary data and country-wide meta-analysis of population data from 190 593 people across 43 low- and middle-income countries. Psychological medicine 2017; 47(12): 2107-17.
23. Hung MS, Chen IC, Lee CP, et al. Incidence and risk factors of depression after diagnosis of lung cancer: A nationwide population-based study. Medicine 2017; 96(19): e6864.
24. Feng HP, Chien WC, Cheng WT, Chung CH, Cheng SM, Tzeng WC. Risk of anxiety and depressive disorders in patients with myocardial infarction: A nationwide population-based cohort study. Medicine 2016; 95(34): e4464.
25. Tu HP, Hsieh HM, Liu TL, Jiang HJ, Wang PW, Huang CJ. Prevalence of Depressive Disorder in Persons With Type 2 Diabetes: A National Population-Based Cohort Study 2000-2010. Psychosomatics 2017; 58(2): 151-63.
26. Liu CY, Fuh JL, Teng EL, et al. Depressive disorders in Chinese patients with Alzheimer's disease. Acta psychiatrica Scandinavica 1999; 100(6): 451-5.
27. Ahmed HU, Hossain MD, Aftab A, et al. Suicide and depression in the World Health Organization South-East Asia Region: A systematic review. WHO South-East Asia journal of public health 2017; 6(1): 60-6.
28. Bauer M, Whybrow PC, Angst J, Versiani M, Möller HJ. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 1: Acute and continuation treatment of major depressive disorder. The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry 2002; 3(1): 5-43.
29. Bauer M, Whybrow PC, Angst J, Versiani M, Möller HJ. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 2: Maintenance treatment of major depressive disorder and treatment of chronic depressive disorders and subthreshold depressions. The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry 2002; 3(2): 69-86.
30. Reilly JG, Ayis SA, Ferrier IN, Jones SJ, Thomas SH. QTc-interval abnormalities and psychotropic drug therapy in psychiatric patients. Lancet (London, England) 2000; 355(9209): 1048-52.
31. Nemeroff CB, Entsuah R, Benattia I, Demitrack M, Sloan DM, Thase ME. Comprehensive analysis of remission (COMPARE) with venlafaxine versus SSRIs. Biological psychiatry 2008; 63(4): 424-34.
32. Thase ME, Pritchett YL, Ossanna MJ, Swindle RW, Xu J, Detke MJ. Efficacy of duloxetine and selective serotonin reuptake inhibitors: comparisons as assessed by remission rates in patients with major depressive disorder. Journal of clinical psychopharmacology 2007; 27(6): 672-6.
33. Kuo CL, Chien IC, Lin CH, Cheng SW. Trends, correlates, and disease patterns of antidepressant use among elderly persons in Taiwan. Social psychiatry and psychiatric epidemiology 2015; 50(9): 1407-15.
34. Kuo CC, Chien IC, Lin CH, et al. Prevalence, correlates, and disease patterns of antidepressant use in Taiwan. Comprehensive psychiatry 2011; 52(6): 662-9.
35. Chien IC, Bih SH, Chou YJ, Lin CH, Lee WG, Chou P. Trends in the use of psychotropic drugs in Taiwan: a population-based national health insurance study, 1997-2004. Psychiatric services (Washington, DC) 2007; 58(4): 554-7.
36. Chien IC, Hsu YC, Tan HK, et al. Trends, correlates, and disease patterns of antidepressant use among children and adolescents in Taiwan. Journal of child neurology 2013; 28(6): 706-12.
37. Gasse C, Petersen L, Chollet J, Saragoussi D. Pattern and predictors of sick leave among users of antidepressants: a Danish retrospective register-based cohort study. Journal of affective disorders 2013; 151(3): 959-66.
38. Fife D, Feng Y, Wang MY, et al. Epidemiology of pharmaceutically treated depression and treatment resistant depression in Taiwan. Psychiatry research 2017; 252: 277-83.
39. Bae KY, Kim SW, Kim JM, et al. Antidepressant prescribing patterns in Korea: results from the clinical research center for depression study. Psychiatry investigation 2011; 8(3): 234-44.
40. Saraykar S, John V, Cao B, Hnatow M, Ambrose CG, Rianon N. Association of Selective Serotonin Reuptake Inhibitors and Bone Mineral Density in Elderly Women. Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry 2017.
41. Hung SC, Lin CH, Hung HC, Lin CL, Lai SW. Use of Selective Serotonin Reuptake Inhibitors and Risk of Hip Fracture in the Elderly: A Case-Control Study in Taiwan. Journal of the American Medical Directors Association 2017; 18(4): 350-4.
42. Carriere I, Farre A, Norton J, et al. Patterns of selective serotonin reuptake inhibitor use and risk of falls and fractures in community-dwelling elderly people: the Three-City cohort. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2016; 27(11): 3187-95.
43. Andrade C, Sandarsh S, Chethan KB, Nagesh KS. Serotonin reuptake inhibitor antidepressants and abnormal bleeding: a review for clinicians and a reconsideration of mechanisms. The Journal of clinical psychiatry 2010; 71(12): 1565-75.
44. Mortensen JK, Larsson H, Johnsen SP, Andersen G. Post stroke use of selective serotonin reuptake inhibitors and clinical outcome among patients with ischemic stroke: a nationwide propensity score-matched follow-up study. Stroke 2013; 44(2): 420-6.
45. Hung CC, Lin CH, Lan TH, Chan CH. The association of selective serotonin reuptake inhibitors use and stroke in geriatric population. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry 2013; 21(8): 811-5.
46. Aggarwal A, Kumar R, Sharma R, Sharma DD. Escitalopram and ischemic stroke: causal or chance association? The Journal of neuropsychiatry and clinical neurosciences 2011; 23(2): E38-9.
47. Taylor D, Sparshatt A, Varma S, Olofinjana O. Antidepressant efficacy of agomelatine: meta-analysis of published and unpublished studies. BMJ (Clinical research ed) 2014; 348: g1888.
48. Lopes R, Alves JC, Rego RG. Trazodone Addition to Paroxetine and Mirtazapine in a Patient with Treatment-Resistant Depression: The Pros and Cons of Combining Three Antidepressants. Case reports in medicine 2016; 2016: 5362485.
49. Hashimoto T, Shiina A, Hasegawa T, et al. Effect of mirtazapine versus selective serotonin reuptake inhibitors on benzodiazepine use in patients with major depressive disorder: a pragmatic, multicenter, open-label, randomized, active-controlled, 24-week trial. Annals of general psychiatry 2016; 15: 27.
50. Nam B, Bae S, Kim SM, Hong JS, Han DH. Comparing the Effects of Bupropion and Escitalopram on Excessive Internet Game Play in Patients with Major Depressive Disorder. Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology 2017; 15(4): 361-8.
51. Lee Y, Rosenblat JD, Lee J, et al. Efficacy of antidepressants on measures of workplace functioning in major depressive disorder: A systematic review. Journal of affective disorders 2018; 227: 406-15.
52. Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB. Sex and depression in the National Comorbidity Survey. I: Lifetime prevalence, chronicity and recurrence. Journal of affective disorders 1993; 29(2-3): 85-96.
53. Burt VK, Stein K. Epidemiology of depression throughout the female life cycle. The Journal of clinical psychiatry 2002; 63 Suppl 7: 9-15.
54. Chiu E. Epidemiology of depression in the Asia Pacific region. Australasian psychiatry : bulletin of Royal Australian and New Zealand College of Psychiatrists 2004; 12 Suppl: S4-10.
55. Gavin NI, Gaynes BN, Lohr KN, Meltzer-Brody S, Gartlehner G, Swinson T. Perinatal depression: a systematic review of prevalence and incidence. Obstetrics and gynecology 2005; 106(5 Pt 1): 1071-83.
56. Percudani M, Barbui C, Fortino I, Petrovich L. Antidepressant drug prescribing among elderly subjects: a population-based study. International journal of geriatric psychiatry 2005; 20(2): 113-8.
57. Weissman J, Meyers BS, Ghosh S, Bruce ML. Demographic, clinical, and functional factors associated with antidepressant use in the home healthcare elderly. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry 2011; 19(12): 1042-5.
58. Soudry A, Dufouil C, Ritchie K, Dartigues JF, Tzourio C, Alperovitch A. Factors associated with changes in antidepressant use in a community-dwelling elderly cohort: the Three-City Study. European journal of clinical pharmacology 2008; 64(1): 51-9.
59. Marengoni A, Bianchi G, Nobili A, et al. Prevalence and characteristics of antidepressant drug prescriptions in older Italian patients. International psychogeriatrics 2012; 24(4): 606-13.
60. Blazer DG, Hybels CF, Fillenbaum GG, Pieper CF. Predictors of antidepressant use among older adults: have they changed over time? The American journal of psychiatry 2005; 162(4): 705-10.
61. Pfalzgraf AR, Scott V, Makela E, Kavookjian J, Hartsock SL, Miller LA. Child psychiatrists' self-reported treatment and monitoring of children and adolescents with major depressive disorder. Journal of psychiatric practice 2012; 18(4): 253-61.
62. Turgay A, Ansari R. Major Depression with ADHD: In Children and Adolescents. Psychiatry (Edgmont (Pa : Township)) 2006; 3(4): 20-32.
63. Chen MH, Su TP, Chen YS, et al. Higher risk of developing mood disorders among adolescents with comorbidity of attention deficit hyperactivity disorder and disruptive behavior disorder: a nationwide prospective study. Journal of psychiatric research 2013; 47(8): 1019-23.
64. Chang JP, Chi MH, Chiu YN, Tsai WC, Gau SS, Shang CY. Serotonin-norepinephrine reuptake inhibitor-associated mixed episode in an adolescent with schizoaffective disorder. Journal of clinical psychopharmacology 2014; 34(4): 525-6.
65. Merry SN, Hetrick SE, Stasiak K. Effectiveness and Safety of Antidepressants for Children and Adolescents: Implications for Clinical Practice. JAMA psychiatry 2017; 74(10): 985-6.
66. Luft MJ, Lamy M, DelBello MP, McNamara RK, Strawn JR. Antidepressant-Induced Activation in Children and Adolescents: Risk, Recognition and Management. Current problems in pediatric and adolescent health care 2018; 48(2): 50-62.
67. Institute NHR. National Health Insurance Research Database (NHIRD). http://nhird.nhri.org.tw/en/index.html (accessed 08.19 2018).
68. WHO. Guidelines for ATC classification and DDD assignment. 2017. https://www.whocc.no/news/guidelines_for_atc_classification_and_ddd_assignment (accessed 01/31 2018).
69. Cipriani A, Barbui C, Butler R, Hatcher S, Geddes J. Depression in adults: drug and physical treatments. BMJ clinical evidence 2011; 2011.
70. Singhal AB, Caviness VS, Begleiter AF, Mark EJ, Rordorf G, Koroshetz WJ. Cerebral vasoconstriction and stroke after use of serotonergic drugs. Neurology 2002; 58(1): 130-3.
71. Molaie M. Serotonin syndrome presenting with migrainelike stroke. Headache 1997; 37(8): 519-21.
72. Chen C, Si TM, Xiang YT, et al. Prevalence and prescription of antidepressants in depression with somatic comorbidity in Asia: the Research on East Asian Psychotropic Prescription Patterns study. Chinese medical journal 2015; 128(7): 853-8.
73. Van der Heyden JHA, Gisle L, Hesse E, Demarest S, Drieskens S, Tafforeau J. Gender differences in the use of anxiolytics and antidepressants: a population based study. Pharmacoepidemiology and drug safety 2009; 18(11): 1101-10.
74. Boyd A, Van de Velde S, Pivette M, et al. Gender Differences in Psychotropic Use Across Europe: Results From a Large Cross-Sectional, Population-Based Study. European Psychiatry 2015; 30(6): 778-88.
75. Zhong W, Kremers HM, Yawn BP, et al. Time trends of antidepressant drug prescriptions in men versus women in a geographically defined US population. Archives of women's mental health 2014; 17(6): 485-92.
76. Newhouse P, Albert K. Estrogen, Stress, and Depression: A Neurocognitive Model. JAMA psychiatry 2015; 72(7): 727-9.
77. Improtant gender statistics by Executive Yuan in Taiwan-number of babies born. 2019. https://www.gender.ey.gov.tw/gecdb/Stat_Statistics_Category.aspx?fs=fTQP3HmkUvd1PbnmtSP3rw%3D%3D.
78. NHRI/HPA. National Health Interview Survey in Taiwan 2009. Taiwan: The National Health Research Institutes of Taiwan / Health Promotion Administration of Taiwan / Ministry of Health and Welfare of Taiwan, 2011.
79. Ministry of Health and Welfare T. National Health Insurance Annual Statistical Report. https://dep.mohw.gov.tw/DOS/np-1918-113.html: Ministry of Health and Welfare, Taiwan; 2009 to 2013.
80. Moller-Leimkuhler AM. Barriers to help-seeking by men: a review of sociocultural and clinical literature with particular reference to depression. Journal of affective disorders 2002; 71(1-3): 1-9.
81. Galdas PM, Cheater F, Marshall P. Men and health help-seeking behaviour: literature review. Journal of advanced nursing 2005; 49(6): 616-23.
82. Chen MT, Li CY, Lin HC, Shen WW, Hsieh PC, Chen CC. Health-seeking behavior, alternative medicine, and quality of life in Taiwanese panic disorder patients. International journal of psychiatry in clinical practice 2013; 17(3): 206-15.
83. Thompson AE, Anisimowicz Y, Miedema B, Hogg W, Wodchis WP, Aubrey-Bassler K. The influence of gender and other patient characteristics on health care-seeking behaviour: a QUALICOPC study. BMC Fam Pract 2016; 17: 38-.
84. Han DY, Chen SH, Hwang KK, Wei HL. Effects of psychoeducation for depression on help-seeking willingness: biological attribution versus destigmatization. Psychiatry and clinical neurosciences 2006; 60(6): 662-8.
85. Han DY, Chen SH. Reducing the stigma of depression through neurobiology-based psychoeducation: a randomized controlled trial. Psychiatry and clinical neurosciences 2014; 68(9): 666-73.
86. Wu CY, Liu SI, Chang SS, Sun FJ. Surveys of medical seeking preference, mental health literacy, and attitudes toward mental illness in Taiwan, 1990-2000. Journal of the Formosan Medical Association = Taiwan yi zhi 2014; 113(1): 33-41.
87. Chang FC, Sung HY, Zhu SH, Chiou ST. Impact of the 2009 Taiwan tobacco hazards prevention act on smoking cessation. Addiction (Abingdon, England) 2014; 109(1): 140-6.
88. HPA. Results of survey on smoking behavior in Taiwan. 2019. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1718&pid=9913.
89. Gartlehner G, Hansen RA, Morgan LC, et al. AHRQ Comparative Effectiveness Reviews. Second-Generation Antidepressants in the Pharmacologic Treatment of Adult Depression: An Update of the 2007 Comparative Effectiveness Review. Rockville (MD): Agency for Healthcare Research and Quality (US); 2011.
90. Gauthier C, Abdel-Ahad P, Gaillard R. [Switching and stopping antidepressants]. L'Encephale 2018; 44(4): 379-86.
91. Boyce P, Hopwood M, Morris G, et al. Switching antidepressants in the treatment of major depression: When, how and what to switch to? Journal of affective disorders 2020; 261: 160-3.
92. Saragoussi D, Chollet J, Bineau S, Chalem Y, Milea D. Antidepressant switching patterns in the treatment of major depressive disorder: a General Practice Research Database (GPRD) Study. International journal of clinical practice 2012; 66(11): 1079-87.
93. Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug metabolism reviews 2009; 41(2): 89-295.
94. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & therapeutics 2013; 138(1): 103-41.
95. Ziegler VE, Biggs JT. Tricyclic Plasma Levels: Effect of Age, Race, Sex, and Smoking. Jama 1977; 238(20): 2167-9.
96. Murphy E, Hou L, Maher BS, et al. Race, Genetic Ancestry and Response to Antidepressant Treatment for Major Depression. Neuropsychopharmacology 2013; 38(13): 2598-606.
97. Williams AJ, Lai Z, Knight S, Kamali M, Assari S, McInnis MG. Risk Factors Associated With Antidepressant Exposure and History of Antidepressant-Induced Mania in Bipolar Disorder. The Journal of clinical psychiatry 2018; 79(3).
98. Keers R, Aitchison KJ. Gender differences in antidepressant drug response. International review of psychiatry (Abingdon, England) 2010; 22(5): 485-500.
99. Damoiseaux VA, Proost JH, Jiawan VC, Melgert BN. Sex differences in the pharmacokinetics of antidepressants: influence of female sex hormones and oral contraceptives. Clinical pharmacokinetics 2014; 53(6): 509-19.
100. Ward KE. Pregnancy and Lactation: Therapeutic Considerations. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach, 10e. New York, NY: McGraw-Hill Education; 2017.
101. Kasper S, Praschak-Rieder N, Tauscher J, Wolf R. A risk-benefit assessment of mirtazapine in the treatment of depression. Drug Saf 1997; 17(4): 251-64.
102. Fawcett J, Barkin RL. Review of the results from clinical studies on the efficacy, safety and tolerability of mirtazapine for the treatment of patients with major depression. Journal of affective disorders 1998; 51(3): 267-85.
103. Lee KU, Lee YM, Nam JM, et al. Antidepressant-Induced Sexual Dysfunction among Newer Antidepressants in a Naturalistic Setting. Psychiatry investigation 2010; 7(1): 55-9.
104. Hellmann-Regen J, Piber D, Hinkelmann K, et al. Depressive syndromes in neurological disorders. European archives of psychiatry and clinical neuroscience 2013; 263 Suppl 2: S123-36.
105. Raskind MA. Diagnosis and treatment of depression comorbid with neurologic disorders. The American journal of medicine 2008; 121(11 Suppl 2): S28-37.
106. Rickards H. Depression in neurological disorders: Parkinson's disease, multiple sclerosis, and stroke. Journal of neurology, neurosurgery, and psychiatry 2005; 76 Suppl 1: i48-52.
107. Guzik A, Bushnell C. Stroke Epidemiology and Risk Factor Management. Continuum (Minneapolis, Minn) 2017; 23(1, Cerebrovascular Disease): 15-39.
108. Chi N-F, Chien L-N, Ku H-L, Hu C-J, Chiou H-Y. Alzheimer disease and risk of stroke: a population-based cohort study. Neurology 2013; 80(8): 705-11.
109. de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. The Lancet Neurology 2006; 5(6): 525-35.
110. Tsai FJ, Huang YH, Liu HC, Huang KY, Huang YH, Liu SI. Patient health questionnaire for school-based depression screening among Chinese adolescents. Pediatrics 2014; 133(2): e402-9.
111. Hughes CW, Emslie GJ, Crismon ML, et al. The Texas Children's Medication Algorithm Project: report of the Texas Consensus Conference Panel on Medication Treatment of Childhood Major Depressive Disorder. Journal of the American Academy of Child and Adolescent Psychiatry 1999; 38(11): 1442-54.
112. Daviss WB, Bentivoglio P, Racusin R, Brown KM, Bostic JQ, Wiley L. Bupropion sustained release in adolescents with comorbid attention-deficit/hyperactivity disorder and depression. Journal of the American Academy of Child and Adolescent Psychiatry 2001; 40(3): 307-14.
113. Feighner JP. Mechanism of action of antidepressant medications. The Journal of clinical psychiatry 1999; 60 Suppl 4: 4-11; discussion 2-3.
114. Hu XH, Bull SA, Hunkeler EM, et al. Incidence and duration of side effects and those rated as bothersome with selective serotonin reuptake inhibitor treatment for depression: patient report versus physician estimate. The Journal of clinical psychiatry 2004; 65(7): 959-65.
115. de Groot MC, Candore G, Uddin MJ, et al. Case-only designs for studying the association of antidepressants and hip or femur fracture. Pharmacoepidemiology and drug safety 2016; 25 Suppl 1: 103-13.
116. Bak S, Tsiropoulos I, Kjaersgaard JO, et al. Selective serotonin reuptake inhibitors and the risk of stroke: a population-based case-control study. Stroke 2002; 33(6): 1465-73.
117. Kharofa J, Sekar P, Haverbusch M, et al. Selective serotonin reuptake inhibitors and risk of hemorrhagic stroke. Stroke 2007; 38(11): 3049-51.
118. Behr S, Andersohn F, Garbe E. Risk of intracerebral hemorrhage associated with phenprocoumon exposure: a nested case-control study in a large population-based German database. Pharmacoepidemiology and drug safety 2010; 19(7): 722-30.
119. Coupland CA, Dhiman P, Barton G, et al. A study of the safety and harms of antidepressant drugs for older people: a cohort study using a large primary care database. Health technology assessment (Winchester, England) 2011; 15(28): 1-202, iii-iv.
120. Aarts N, Akoudad S, Noordam R, et al. Inhibition of serotonin reuptake by antidepressants and cerebral microbleeds in the general population. Stroke 2014; 45(7): 1951-7.
121. de Abajo FJ. Effects of selective serotonin reuptake inhibitors on platelet function: mechanisms, clinical outcomes and implications for use in elderly patients. Drugs & aging 2011; 28(5): 345-67.
122. Van Nueten JM, Janssens WJ, Vanhoutte PM. Serotonin and vascular reactivity. Pharmacological research communications 1985; 17(7): 585-608.
123. Wgner A, Montero D, Martensson B, Siwers B, Asberg M. Effects of fluoxetine treatment of platelet 3H-imipramine binding, 5-HT uptake and 5-HT content in major depressive disorder. Journal of affective disorders 1990; 20(2): 101-13.
124. Hallback I, Hagg S, Eriksson AC, Whiss PA. In vitro effects of serotonin and noradrenaline reuptake inhibitors on human platelet adhesion and coagulation. Pharmacological reports : PR 2012; 64(4): 979-83.
125. Hergovich N, Aigner M, Eichler HG, Entlicher J, Drucker C, Jilma B. Paroxetine decreases platelet serotonin storage and platelet function in human beings. Clinical pharmacology and therapeutics 2000; 68(4): 435-42.
126. Vanhoutte PM, Cohen RA. The elusory role of serotonin in vascular function and disease. Biochemical pharmacology 1983; 32(24): 3671-4.
127. Welch KM, Hashi K, Meyer JS. Cerebrovascular response to intracarotid injection of serotonin before and after middle cerebral artery occlusion. Journal of neurology, neurosurgery, and psychiatry 1973; 36(5): 724-35.
128. Muhonen MG, Robertson SC, Gerdes JS, Loftus CM. Effects of serotonin on cerebral circulation after middle cerebral artery occlusion. Journal of neurosurgery 1997; 87(2): 301-6.
129. Heistad DD, Breese K, Armstrong ML. Cerebral vasoconstrictor responses to serotonin after dietary treatment of atherosclerosis: implications for transient ischemic attacks. Stroke 1987; 18(6): 1068-73.
130. Verheyen A, Lauwers F, Vlaminckx E, Wouters L, de Clerck F. Oversensitivity to serotonin of the collateralized vascular bed in rat hindquarters: mechanisms of increased vasoconstriction. European journal of pharmacology 1991; 194(2-3): 209-16.
131. Golino P, Piscione F, Willerson JT, et al. Divergent effects of serotonin on coronary-artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. The New England journal of medicine 1991; 324(10): 641-8.
132. Razzaque Z, Heald MA, Pickard JD, et al. Vasoconstriction in human isolated middle meningeal arteries: determining the contribution of 5-HT1B- and 5-HT1F-receptor activation. British journal of clinical pharmacology 1999; 47(1): 75-82.
133. Noskin O, Jafarimojarrad E, Libman RB, Nelson JL. Diffuse cerebral vasoconstriction (Call-Fleming syndrome) and stroke associated with antidepressants. Neurology 2006; 67(1): 159-60.
134. Yildiz O, Smith JR, Purdy RE. Serotonin and vasoconstrictor synergism. Life sciences 1998; 62(19): 1723-32.
135. Humphries JE, Wheby MS, VandenBerg SR. Fluoxetine and the bleeding time. Archives of pathology & laboratory medicine 1990; 114(7): 727-8.
136. Alderman CP, Moritz CK, Ben-Tovim DI. Abnormal platelet aggregation associated with fluoxetine therapy. The Annals of pharmacotherapy 1992; 26(12): 1517-9.
137. Krivy J, Wiener J. Sertraline and platelet counts in idiopathic thrombocytopenia purpura. Lancet (London, England) 1995; 345(8942): 132.
138. Cooper TA, Valcour VG, Gibbons RB, O'Brien-Falls K. Spontaneous ecchymoses due to paroxetine administration. The American journal of medicine 1998; 104(2): 197-8.
139. Lake MB, Birmaher B, Wassick S, Mathos K, Yelovich AK. Bleeding and selective serotonin reuptake inhibitors in childhood and adolescence. Journal of child and adolescent psychopharmacology 2000; 10(1): 35-8.
140. de Abajo FJ, Jick H, Derby L, Jick S, Schmitz S. Intracranial haemorrhage and use of selective serotonin reuptake inhibitors. British journal of clinical pharmacology 2000; 50(1): 43-7.
141. Bismuth-Evenzal Y, Gonopolsky Y, Gurwitz D, Iancu I, Weizman A, Rehavi M. Decreased serotonin content and reduced agonist-induced aggregation in platelets of patients chronically medicated with SSRI drugs. Journal of affective disorders 2012; 136(1-2): 99-103.
142. Verdel BM, Souverein PC, Meenks SD, Heerdink ER, Leufkens HG, Egberts TC. Use of serotonergic drugs and the risk of bleeding. Clinical pharmacology and therapeutics 2011; 89(1): 89-96.
143. Douglas I, Smeeth L, Irvine D. The use of antidepressants and the risk of haemorrhagic stroke: a nested case control study. British journal of clinical pharmacology 2011; 71(1): 116-20.
144. Chan CH, Huang HH, Lin CH, Kuan YC, Loh EW, Lan TH. Risk of First Onset Stroke in SSRI-Exposed Adult Subjects: Survival Analysis and Examination of Age and Time Effects. The Journal of clinical psychiatry 2017; 78(8): e1006-e12.
145. Coupland C, Dhiman P, Morriss R, Arthur A, Barton G, Hippisley-Cox J. Antidepressant use and risk of adverse outcomes in older people: population based cohort study. BMJ (Clinical research ed) 2011; 343: d4551.
146. Hankey GJ. Secondary stroke prevention. The Lancet Neurology 2014; 13(2): 178-94.
147. Esenwa C, Gutierrez J. Secondary stroke prevention: challenges and solutions. Vascular health and risk management 2015; 11: 437-50.
148. Coupland C, Hill T, Morriss R, Moore M, Arthur A, Hippisley-Cox J. Antidepressant use and risk of cardiovascular outcomes in people aged 20 to 64: cohort study using primary care database. BMJ (Clinical research ed) 2016; 352: i1350.
149. Chen Y, Guo JJ, Patel NC. Hemorrhagic stroke associated with antidepressant use in patients with depression: does degree of serotonin reuptake inhibition matter? Pharmacoepidemiology and drug safety 2009; 18(3): 196-202.
150. Hansen RA, Khodneva Y, Glasser SP, Qian J, Redmond N, Safford MM. Antidepressant Medication Use and Its Association With Cardiovascular Disease and All-Cause Mortality in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. The Annals of pharmacotherapy 2016; 50(4): 253-61.
151. Wurtz M, Schmidt M, Grove EL, Horvath-Puho E, Christiansen CF, Sorensen HT. Preadmission use of selective serotonin reuptake inhibitors and short-term mortality in diabetic patients hospitalized due to stroke. Journal of internal medicine 2016; 280(4): 407-18.
152. Hackam DG, Mrkobrada M. Selective serotonin reuptake inhibitors and brain hemorrhage: a meta-analysis. Neurology 2012; 79(18): 1862-5.
153. Shin D, Oh YH, Eom CS, Park SM. Use of selective serotonin reuptake inhibitors and risk of stroke: a systematic review and meta-analysis. Journal of neurology 2014; 261(4): 686-95.
154. Juang HT, Chen PC, Chien KL. Using antidepressants and the risk of stroke recurrence: report from a national representative cohort study. BMC neurology 2015; 15: 86.
155. Mortensen JK, Larsson H, Johnsen SP, Andersen G. Impact of prestroke selective serotonin reuptake inhibitor treatment on stroke severity and mortality. Stroke 2014; 45(7): 2121-3.
156. Chu CS, Chou PH, Lin CH, et al. Use of Selective Serotonin Reuptake Inhibitors and Risks of Stroke in Patients with Obsessive Compulsive Disorder: A Population-Based Study. PloS one 2016; 11(9): e0162239.
157. Acharya T, Acharya S, Tringali S, Huang J. Association of antidepressant and atypical antipsychotic use with cardiovascular events and mortality in a veteran population. Pharmacotherapy 2013; 33(10): 1053-61.
158. Smoller JW, Allison M, Cochrane BB, et al. Antidepressant use and risk of incident cardiovascular morbidity and mortality among postmenopausal women in the Women's Health Initiative study. Archives of internal medicine 2009; 169(22): 2128-39.
159. Statistics. Number of people using antidepressants. 2019. https://dep.mohw.gov.tw/DOS/cp-1720-9734-113.html.
160. Maaijwee NA, Rutten-Jacobs LC, Schaapsmeerders P, van Dijk EJ, de Leeuw FE. Ischaemic stroke in young adults: risk factors and long-term consequences. Nature reviews Neurology 2014; 10(6): 315-25.
161. Wang YP, Chen YT, Tsai CF, et al. Short-term use of serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding. The American journal of psychiatry 2014; 171(1): 54-61.
162. Mansournia MA, Etminan M, Danaei G, Kaufman JS, Collins G. Handling time varying confounding in observational research. BMJ (Clinical research ed) 2017; 359: j4587.
163. Pazzagli L, Linder M, Zhang M, et al. Methods for time-varying exposure related problems in pharmacoepidemiology: An overview. Pharmacoepidemiology and drug safety 2018; 27(2): 148-60.
164. Meschia JF, Bushnell C, Boden-Albala B, et al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014; 45(12): 3754-832.
165. Larson SL, Owens PL, Ford D, Eaton W. Depressive disorder, dysthymia, and risk of stroke: thirteen-year follow-up from the Baltimore epidemiologic catchment area study. Stroke 2001; 32(9): 1979-83.
166. Imfeld P, Bodmer M, Schuerch M, Jick SS, Meier CR. Risk of incident stroke in patients with Alzheimer disease or vascular dementia. Neurology 2013; 81(10): 910-9.
167. Tsai KY, Lee CC, Chou YM, Su CY, Chou FH. The incidence and relative risk of stroke in patients with schizophrenia: a five-year follow-up study. Schizophrenia research 2012; 138(1): 41-7.
168. Hallas J, Pottegard A. Use of self-controlled designs in pharmacoepidemiology. Journal of internal medicine 2014; 275(6): 581-9.
169. Takeuchi Y, Shinozaki T, Matsuyama Y. A comparison of estimators from self-controlled case series, case-crossover design, and sequence symmetry analysis for pharmacoepidemiological studies. BMC medical research methodology 2018; 18(1): 4.
170. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Statistics in medicine 2009; 28(25): 3083-107.
171. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate behavioral research 2011; 46(3): 399-424.
172. Petersen I, Douglas I, Whitaker H. Self controlled case series methods: an alternative to standard epidemiological study designs. BMJ (Clinical research ed) 2016; 354: i4515.
173. Drake C, Fisher L. Prognostic models and the propensity score. International journal of epidemiology 1995; 24(1): 183-7.
174. D'Agostino RB, Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in medicine 1998; 17(19): 2265-81.
175. Hartzema AG. Pharmacoepidemiology--its relevance to clinical practice. Journal of clinical pharmacy and therapeutics 1992; 17(2): 73-4.
176. Waller P. Pharmacoepidemiology--a tool for public health. Pharmacoepidemiology and drug safety 2001; 10(2): 165-72.
177. West-Strum D. Chapter 1. Introduction to Pharmacoepidemiology. In: Yang Y, West-Strum D, eds. Understanding Pharmacoepidemiology. New York, NY: The McGraw-Hill Companies; 2011.
178. Kyriacou DN, Lewis RJ. Confounding by Indication in Clinical Research. Jama 2016; 316(17): 1818-9.
179. Ananth CV, Schisterman EF. Confounding, causality, and confusion: the role of intermediate variables in interpreting observational studies in obstetrics. American journal of obstetrics and gynecology 2017; 217(2): 167-75.
180. Root AA, Wong AY, Ghebremichael-Weldeselassie Y, et al. Evaluation of the risk of cardiovascular events with clarithromycin using both propensity score and self-controlled study designs. British journal of clinical pharmacology 2016; 82(2): 512-21.
181. Ramsay EN, Pratt NL, Ryan P, Roughead EE. Proton pump inhibitors and the risk of pneumonia: a comparison of cohort and self-controlled case series designs. BMC medical research methodology 2013; 13: 82.
182. Song JW, Chung KC. Observational studies: cohort and case-control studies. Plastic and reconstructive surgery 2010; 126(6): 2234.
183. Farrington CP, Nash J, Miller E. Case series analysis of adverse reactions to vaccines: a comparative evaluation. American journal of epidemiology 1996; 143(11): 1165-73.
184. Hocine MN, Farrington CP, Touze E, et al. Hepatitis B vaccination and first central nervous system demyelinating events: reanalysis of a case-control study using the self-controlled case series method. Vaccine 2007; 25(31): 5938-43.
185. Touze E, Fourrier A, Rue-Fenouche C, et al. Hepatitis B vaccination and first central nervous system demyelinating event: a case-control study. Neuroepidemiology 2002; 21(4): 180-6.
186. Zenner D, Kruijshaar ME, Andrews N, Abubakar I. Risk of tuberculosis in pregnancy: a national, primary care-based cohort and self-controlled case series study. American journal of respiratory and critical care medicine 2012; 185(7): 779-84.
187. Whitaker HJ, Farrington CP, Spiessens B, Musonda P. Tutorial in biostatistics: the self-controlled case series method. Statistics in medicine 2006; 25(10): 1768-97.
188. Hubbard R, Farrington P, Smith C, Smeeth L, Tattersfield A. Exposure to tricyclic and selective serotonin reuptake inhibitor antidepressants and the risk of hip fracture. American journal of epidemiology 2003; 158(1): 77-84.
189. Hubbard R, Lewis S, West J, et al. Bupropion and the risk of sudden death: a self-controlled case-series analysis using The Health Improvement Network. Thorax 2005; 60(10): 848-50.
190. Tata LJ, Fortun PJ, Hubbard RB, et al. Does concurrent prescription of selective serotonin reuptake inhibitors and non-steroidal anti-inflammatory drugs substantially increase the risk of upper gastrointestinal bleeding? Alimentary pharmacology & therapeutics 2005; 22(3): 175-81.
191. Tata LJ, West J, Smith C, et al. General population based study of the impact of tricyclic and selective serotonin reuptake inhibitor antidepressants on the risk of acute myocardial infarction. Heart (British Cardiac Society) 2005; 91(4): 465-71.
192. Gribbin J, Hubbard R, Gladman J, Smith C, Lewis S. Serotonin-norepinephrine reuptake inhibitor antidepressants and the risk of falls in older people: case-control and case-series analysis of a large UK primary care database. Drugs & aging 2011; 28(11): 895-902.
193. Wijlaars LP, Nazareth I, Whitaker HJ, Evans SJ, Petersen I. Suicide-related events in young people following prescription of SSRIs and other antidepressants: a self-controlled case series analysis. BMJ open 2013; 3(9): e003247.
194. Kouvonen A, Vahtera J, Pentti J, et al. Antidepressant use and work-related injuries. Psychological medicine 2016; 46(7): 1391-9.
195. Cheng CL, Kao YH, Lin SJ, Lee CH, Lai ML. Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiology and drug safety 2011; 20(3): 236-42.
196. Hsieh CY, Chen CH, Li CY, Lai ML. Validating the diagnosis of acute ischemic stroke in a National Health Insurance claims database. Journal of the Formosan Medical Association = Taiwan yi zhi 2015; 114(3): 254-9.
197. Kotzailias N, Marker M, Jilma B. Early effects of paroxetine on serotonin storage, plasma levels, and urinary excretion: a randomized, double-blind, placebo-controlled trial. Journal of clinical psychopharmacology 2004; 24(5): 536-9.
198. Villa RF, Ferrari F, Moretti A. Post-stroke depression: Mechanisms and pharmacological treatment. Pharmacology & therapeutics 2018; 184: 131-44.
199. Schottke H, Giabbiconi CM. Post-stroke depression and post-stroke anxiety: prevalence and predictors. International psychogeriatrics 2015; 27(11): 1805-12.
200. Ohira T, Iso H, Satoh S, et al. Prospective study of depressive symptoms and risk of stroke among japanese. Stroke 2001; 32(4): 903-8.
201. Hackett ML, Anderson CS, House A, Xia J. Interventions for treating depression after stroke. The Cochrane database of systematic reviews 2008; (4): Cd003437.
202. Hackett ML, Yang M, Anderson CS, Horrocks JA, House A. Pharmaceutical interventions for emotionalism after stroke. The Cochrane database of systematic reviews 2010; (2): Cd003690.
203. Qin B, Chen H, Gao W, et al. Efficacy, acceptability, and tolerability of antidepressant treatments for patients with post-stroke depression: a network meta-analysis. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 2018; 51(7): e7218.
204. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. The Lancet Neurology 2010; 9(2): 167-76.
205. Lee AH, Somerford PJ, Yau KK. Risk factors for ischaemic stroke recurrence after hospitalisation. The Medical journal of Australia 2004; 181(5): 244-6.
206. Purroy F, Jimenez Caballero PE, Gorospe A, et al. Prediction of early stroke recurrence in transient ischemic attack patients from the PROMAPA study: a comparison of prognostic risk scores. Cerebrovascular diseases (Basel, Switzerland) 2012; 33(2): 182-9.
207. Khanevski AN, Bjerkreim AT, Novotny V, et al. Recurrent ischemic stroke: Incidence, predictors, and impact on mortality. Acta neurologica Scandinavica 2019; 140(1): 3-8.
208. Zhang J, Zhu P, Liu B, et al. Time to recurrence after first-ever ischaemic stroke within 3 years and its risk factors in Chinese population: a prospective cohort study. BMJ open 2019; 9(12): e032087.
209. Kuss O, Legler T, Borgermann J. Treatments effects from randomized trials and propensity score analyses were similar in similar populations in an example from cardiac surgery. Journal of clinical epidemiology 2011; 64(10): 1076-84.
210. Williamson EJ, Forbes A. Introduction to propensity scores. Respirology (Carlton, Vic) 2014; 19(5): 625-35.
211. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70(1): 41-55.
212. Wang J, Donnan PT. Propensity score methods in drug safety studies: practice, strengths and limitations. Pharmacoepidemiology and drug safety 2001; 10(4): 341-4.
213. Newgard CD, Hedges JR, Arthur M, Mullins RJ. Advanced statistics: the propensity score--a method for estimating treatment effect in observational research. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine 2004; 11(9): 953-61.
214. Cummings P, McKnight B, Greenland S. Matched cohort methods for injury research. Epidemiologic reviews 2003; 25: 43-50.
215. Little RJ, Rubin DB. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annual review of public health 2000; 21: 121-45.
216. Elze MC, Gregson J, Baber U, et al. Comparison of Propensity Score Methods and Covariate Adjustment: Evaluation in 4 Cardiovascular Studies. Journal of the American College of Cardiology 2017; 69(3): 345-57.
217. Melton ST, Kirkwood CK. Anxiety Disorders: Generalized Anxiety, Panic, and Social Anxiety Disorders. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach, 10e. New York, NY: McGraw-Hill Education; 2017.
218. Herndon CM, Strickland JM, Ray JB. Pain Management. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach, 10e. New York, NY: McGraw-Hill Education; 2017.
219. Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73(1): 13-22.
220. Zeger SL, Liang K-Y, Albert PS. Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988: 1049-60.
221. Hardin JW. Generalized estimating equations (GEE). Encyclopedia of statistics in behavioral science 2005.
222. Hubbard AE, Ahern J, Fleischer NL, et al. To GEE or not to GEE: comparing population average and mixed models for estimating the associations between neighborhood risk factors and health. Epidemiology (Cambridge, Mass) 2010: 467-74.
223. Bull SA, Hu XH, Hunkeler EM, et al. Discontinuation of use and switching of antidepressants: influence of patient-physician communication. Jama 2002; 288(11): 1403-9.
224. Wu CS, Shau WY, Chan HY, Lai MS. Persistence of antidepressant treatment for depressive disorder in Taiwan. General hospital psychiatry 2013; 35(3): 279-85.
225. Krivoy A, Balicer RD, Feldman B, et al. The impact of age and gender on adherence to antidepressants: a 4-year population-based cohort study. Psychopharmacology 2015; 232(18): 3385-90.
226. Serna MC, Real J, Cruz I, Galván L, Martin E. Monitoring patients on chronic treatment with antidepressants between 2003 and 2011: analysis of factors associated with compliance. BMC public health 2015; 15: 1184.
227. Lee YC, Lin CH, Lin MS, Lin JW, Chang CH, Lai MS. Effects of selective serotonin reuptake inhibitors versus tricyclic antidepressants on cerebrovascular events: a nationwide population-based cohort study. Journal of clinical psychopharmacology 2013; 33(6): 782-9.
228. Lee YC, Lin CH, Lin MS, Lu Y, Chang CH, Lin JW. Comparison of the effects of serotonin-norepinephrine reuptake inhibitors versus selective serotonin reuptake inhibitors on cerebrovascular events. The Journal of clinical psychiatry 2016; 77(1): e1-7.
229. Chen Y, Guo JJ, Li H, Wulsin L, Patel NC. Risk of cerebrovascular events associated with antidepressant use in patients with depression: a population-based, nested case-control study. The Annals of pharmacotherapy 2008; 42(2): 177-84.
230. Salaycik KJ, Kelly-Hayes M, Beiser A, et al. Depressive symptoms and risk of stroke: the Framingham Study. Stroke 2007; 38(1): 16-21.
231. Li CT, Bai YM, Tu PC, et al. Major depressive disorder and stroke risks: a 9-year follow-up population-based, matched cohort study. PloS one 2012; 7(10): e46818.
232. Ferrucci L, Guralnik JM, Salive ME, et al. Cognitive impairment and risk of stroke in the older population. Journal of the American Geriatrics Society 1996; 44(3): 237-41.
233. Henon H, Pasquier F, Durieu I, et al. Preexisting dementia in stroke patients. Baseline frequency, associated factors, and outcome. Stroke 1997; 28(12): 2429-36.
234. Zhu L, Fratiglioni L, Guo Z, Winblad B, Viitanen M. Incidence of stroke in relation to cognitive function and dementia in the Kungsholmen Project. Neurology 2000; 54(11): 2103-7.
235. Miyoshi K. What is 'early onset dementia'? Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society 2009; 9(2): 67-72.
236. Vilalta-Franch J, Garre-Olmo J, López-Pousa S, Turon-Estrada A, Pericot-Nierga I. [Differences among dementias according to onset age: study based on dementia registry data]. Neurologia (Barcelona, Spain) 2008; 23(3): 145-51.
237. Ikejima C, Yasuno F, Mizukami K, Sasaki M, Tanimukai S, Asada T. Prevalence and causes of early-onset dementia in Japan: a population-based study. Stroke 2009; 40(8): 2709-14.
238. Picard C, Pasquier F, Martinaud O, Hannequin D, Godefroy O. Early onset dementia: characteristics in a large cohort from academic memory clinics. Alzheimer disease and associated disorders 2011; 25(3): 203-5.
239. Papageorgiou SG, Kontaxis T, Bonakis A, Kalfakis N, Vassilopoulos D. Frequency and causes of early-onset dementia in a tertiary referral center in Athens. Alzheimer disease and associated disorders 2009; 23(4): 347-51.
240. Vilalta-Franch J, Lopez-Pousa S, Garre-Olmo J, Turon-Estrada A, Pericot-Nierga I. [Clinical heterogeneity of Alzheimer's disease according to the age of onset]. Revista de neurologia 2007; 45(2): 67-72.
241. Rosness TA, Barca ML, Engedal K. Occurrence of depression and its correlates in early onset dementia patients. International journal of geriatric psychiatry 2010; 25(7): 704-11.
242. Ferreira MDC, Abreu MJ, Machado C, Santos B, Machado Á, Costa AS. Neuropsychiatric Profile in Early Versus Late Onset Alzheimer's Disease. American journal of Alzheimer's disease and other dementias 2018; 33(2): 93-9.
243. Baillon S, Gasper A, Wilson-Morkeh F, Pritchard M, Jesu A, Velayudhan L. Prevalence and Severity of Neuropsychiatric Symptoms in Early- Versus Late-Onset Alzheimer's Disease. American journal of Alzheimer's disease and other dementias 2019; 34(7-8): 433-8.
244. Carotenuto A, Rea R, Colucci L, et al. Late and early onset dementia: what is the role of vascular factors? A retrospective study. J Neurol Sci 2012; 322(1-2): 170-5.
245. Andersson C, Vasan RS. Epidemiology of cardiovascular disease in young individuals. Nature reviews Cardiology 2018; 15(4): 230-40.
246. Curkendall SM, Mo J, Glasser DB, Rose Stang M, Jones JK. Cardiovascular disease in patients with schizophrenia in Saskatchewan, Canada. The Journal of clinical psychiatry 2004; 65(5): 715-20.
247. Lin HC, Hsiao FH, Pfeiffer S, Hwang YT, Lee HC. An increased risk of stroke among young schizophrenia patients. Schizophrenia research 2008; 101(1-3): 234-41.
248. Smith DA, Beier MT. Association between risperidone treatment and cerebrovascular adverse events: examining the evidence and postulating hypotheses for an underlying mechanism. Journal of the American Medical Directors Association 2004; 5(2): 129-32.
249. Douglas IJ, Smeeth L. Exposure to antipsychotics and risk of stroke: self controlled case series study. BMJ (Clinical research ed) 2008; 337: a1227.
250. Laredo L, Vargas E, Blasco AJ, Aguilar MD, Moreno A, Portoles A. Risk of cerebrovascular accident associated with use of antipsychotics: population-based case-control study. Journal of the American Geriatrics Society 2011; 59(7): 1182-7.
251. Huang CY, Yang SY, Mojtabai R, et al. Trends of Polypharmacy and Prescription Patterns of Antidepressants in Asia. Journal of clinical psychopharmacology 2018; 38(6): 598-603.
252. Oza R, Rundell K, Garcellano M. Recurrent Ischemic Stroke: Strategies for Prevention. American family physician 2017; 96(7): 436-40.
253. Trifirò G, Dieleman J, Sen EF, Gambassi G, Sturkenboom MC. Risk of ischemic stroke associated with antidepressant drug use in elderly persons. Journal of clinical psychopharmacology 2010; 30(3): 252-8.
254. O'Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet (London, England) 2010; 376(9735): 112-23.
255. Hu HH, Sheng WY, Chu FL, Lan CF, Chiang BN. Incidence of stroke in Taiwan. Stroke 1992; 23(9): 1237-41.
256. Leong C, Alessi-Severini S, Enns MW, et al. Cerebrovascular, Cardiovascular, and Mortality Events in New Users of Selective Serotonin Reuptake Inhibitors and Serotonin Norepinephrine Reuptake Inhibitors: A Propensity Score-Matched Population-Based Study. Journal of clinical psychopharmacology 2017; 37(3): 332-40.
257. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 2015; 131(4): e29-322.
258. Ekker MS, Boot EM, Singhal AB, et al. Epidemiology, aetiology, and management of ischaemic stroke in young adults. The Lancet Neurology 2018; 17(9): 790-801.
259. Papakostas GI, Petersen T, Iosifescu DV, et al. Obesity among outpatients with major depressive disorder. The international journal of neuropsychopharmacology 2005; 8(1): 59-63.
260. Kloiber S, Ising M, Reppermund S, et al. Overweight and obesity affect treatment response in major depression. Biological psychiatry 2007; 62(4): 321-6.
261. Schuetz EG, Furuya KN, Schuetz JD. Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. The Journal of pharmacology and experimental therapeutics 1995; 275(2): 1011-8.
262. Uhr M, Grauer MT. abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. Journal of psychiatric research 2003; 37(3): 179-85.
263. Ejsing TB, Linnet K. Influence of P-glycoprotein inhibition on the distribution of the tricyclic antidepressant nortriptyline over the blood-brain barrier. Human psychopharmacology 2005; 20(2): 149-53.
264. Relling MV, Lin JS, Ayers GD, Evans WE. Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clinical pharmacology and therapeutics 1992; 52(6): 643-58.
265. Pollock BG, Wylie M, Stack JA, et al. Inhibition of caffeine metabolism by estrogen replacement therapy in postmenopausal women. Journal of clinical pharmacology 1999; 39(9): 936-40.
266. Hagg S, Spigset O, Dahlqvist R. Influence of gender and oral contraceptives on CYP2D6 and CYP2C19 activity in healthy volunteers. British journal of clinical pharmacology 2001; 51(2): 169-73.
267. Dahl ML, Bertilsson L, Nordin C. Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to the CYP2D6 genotype. Psychopharmacology 1996; 123(4): 315-9.
268. Gex-Fabry M, Eap CB, Oneda B, et al. CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Therapeutic drug monitoring 2008; 30(4): 474-82.
269. Tseng YL, Chiang ML, Lane HY, Su KP, Lai YC. Selective serotonin reuptake inhibitors reduce P2Y12 receptor-mediated amplification of platelet aggregation. Thrombosis research 2013; 131(4): 325-32.
270. Sinanovic O, Chiba S. Pharmacological analysis of 5-HT-induced vasoconstriction in isolated, perfused dog skeletal muscle arteries. European journal of pharmacology 1987; 143(3): 353-60.
271. Fagan SC, Hess DC. Stroke. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach, 10e. New York, NY: McGraw-Hill Education; 2017.
272. ASA/AHA. Stroke Symptoms - Learn More Stroke Warning Signs and Symptoms 2018. https://www.stroke.org/en/about-stroke/stroke-symptoms/learn-more-stroke-warning-signs-and-symptoms.
273. Lisabeth LD, Brown DL, Hughes R, Majersik JJ, Morgenstern LB. Acute stroke symptoms: comparing women and men. Stroke 2009; 40(6): 2031-6.
274. Horwitz RI, Feinstein AR. The problem of "protopathic bias" in case-control studies. The American journal of medicine 1980; 68(2): 255-8.
275. Barbosa MM, Araujo E, Pereira M, et al. Psychiatric Symptoms and Benzodiazepine Use Mask a Patent Foramen Ovale-Related Stroke: A Cautionary Tale. European journal of case reports in internal medicine 2019; 6(7): 001120.
276. Parikh NS, Merkler AE, Kummer BR, Kamel H. Ischemic Stroke After Emergency Department Discharge for Symptoms of Transient Neurological Attack. The Neurohospitalist 2018; 8(3): 135-40.
277. Paul NL, Simoni M, Rothwell PM. Transient isolated brainstem symptoms preceding posterior circulation stroke: a population-based study. The Lancet Neurology 2013; 12(1): 65-71.
278. Zuflacht JP, Shao Y, Kronish IM, et al. Psychiatric Hospitalization Increases Short-Term Risk of Stroke. Stroke 2017; 48(7): 1795-801.
279. Willers C, Sunnerhagen KS, Lekander I, von Euler M. The Association of Pre-stroke Psychosis and Post-stroke Levels of Health, Resource Utilization, and Care Process: A Register-Based Study. Frontiers in neurology 2018; 9: 1042.