| 研究生: |
陳春雨 Tan, Choon-Yee |
|---|---|
| 論文名稱: |
CD14基因變異性與塵瞞過敏原敏感性的關係 Association of the genetic polymorphism of the CD14 with mite-sensitization |
| 指導教授: |
張文粲
Chang, Wen-Tsan 王志堯 Wang, Jiu-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | CD14 、塵螨過敏 、氣喘 、基因型 |
| 外文關鍵詞: | mite-sensitization, CD14, asthma, single nucleotide polymorphism |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣喘是一種孩童常見的慢性呼吸道發炎性疾病。吸入過敏原,如家庭塵螨後,經由E 型免疫球蛋白的調控的過敏反應,而產生支氣管收縮。呼吸道的T淋巴球、嗜酸性白血球、巨噬細胞以及肥胖細胞浸潤現象,是一項重要的臨床特徵。在不同族群的一些基因關聯性研究中已在各種不同的染色體上找到一些位置與氣喘或是過敏性疾病的發生有著密切的關係,5號染色體長臂31(5q31)的位置是其中之一。位於這段區域的基因與血清中的E型免疫球蛋白的濃度與嗜酸性白血球的濃度有密切的關係。此外,此區域也包括了一些基因如細胞間質-4、細胞間質-5、細胞間質-13、CD14 和 granulocyte macrophage colony-stimulating factor等。這些基因所表達的蛋白質與T淋巴球的成熟和分化有關係。曾有研究發現,soluble CD14在一些發炎性疾病中有增加的趨勢,而且它與血液中的E 型免疫球蛋白的濃度成反比。但是,同樣是屬於發炎性疾病,過敏性氣喘病人血液中的soluble CD14的濃度就比較低。此外,也有研究發現CD14基因上相對於轉錄起始點的-159位置若有C -> T 的變異,則會影響啟動子的轉錄活性。有關於CD14基因型與疾病的相關性一直都是大家研究的主題。但是卻出現了兩極的結論,以氣喘為例,A. Heinzmann 的研究團隊發現在高加索的小孩的CD14基因型與氣喘沒有相關性,但是, 卻有其他的研究團隊指出患有過敏性疾病的小孩若是帶有CD14/-159CC 的話,則他們血清中的E 型免疫球蛋白濃度比較高。可是,與其他實驗合作的研究中發現,-159 的基因型與血清中的E 型免疫球蛋白濃度並沒有相關性,除非加入另一個marker。除了 CD14/-159這個基因型外,也有找到其他的基因型。而其中有兩個基因型 (-1145 和 -1359) 也常被研究。去年的一篇研究中有提到-159 和 -1359 這兩個基因型與由E 型免疫球蛋白所調控的過敏性疾病有關。由於CD14的基因型與過敏性氣喘之前的相關性一直呈現不同的結論,所以懷疑它們之間的相關性是由造成過敏性氣喘的其中之一的過敏原所影響的。在常見的過敏原中,家庭塵螨是最常見的。目前已知造成過敏的是它們的排泄物和一些消化酵素。為了了解家庭塵螨過敏原是否與CD14的基因型有關係,首先我們利用了酵素免疫分析法證明了家庭塵螨過敏原會與CD14 結合。接著,收集240個檢體,依據臨床診斷和過敏原測試結果,把他們區分為4個不同的族群,分別是 1. 過敏性氣喘(N=60人)、2.非過敏性氣喘(N=60人)、3. 過敏性但是不具有氣喘(N=60人)和4.不過敏也沒有氣喘的個體(N=60人)。比較氣喘組與對照組或是對家庭塵螨過敏組與對照組的soluble CD14 的濃度的差異,結果發現soluble CD14的濃度分佈在對家庭塵螨過敏組與對照組有差異‧在知道每個檢體的CD14基因型後,首先先比較不同基因型的CD14與血清中的soluble CD14和E 型免疫球蛋白的濃度是否有差異。所得到的結果是,帶有CD14/-1359TT的個體,他們的soluble CD14的濃度明顯的比帶有GG或是GT基因型的個體低。相對的他們的E 型免疫球蛋白的濃度則比較高。若比較氣喘組與對照組或是對家庭塵螨過敏組與對照組的基因型分佈是否有差異,則發現說只有在-1359這個基因型,它們在對家庭塵螨過敏組與對照組的分佈有差異,p値小於0.05,所以判定CD14/-1359與家庭塵螨過敏原有相關性。利用PopGene和 PyPop 這個軟體,證明這三個基因型彼此之間具有相連性。所以,進一步評估這些位置的交互作用是否會影響血清中的soluble CD14和E 型免疫球蛋白的濃度。粗略的結果中可以看到帶有CD14 -159CC/-1145AA/-1359TT 則他們血清中的soluble CD14濃度比較低而E 型免疫球蛋白的濃度比較高,相反的,若是帶有CD14 -159TT/-1145GG/-1359GG 則結果與CD14 -159CC/-1145AA/-1359TT 是相反的。總而言之,我們認為CD14 的基因型與家庭塵螨過敏原有相關性。
Asthma is a chronic inflammatory disease which is commonly seen among the children. After exhale the allergens, such as house dust mite, the bronchiole is contracting and is mediated by the immunoglobulin E. The infiltration of the T-lymphocytes, eosinophils, macrophages and mast cells in the respiratory tract is an important clinical syndrome. Searching through different populations, multiple loci located on different chromosome are found to be associated with the asthma or allergic disease, for example chromosome 5q31. The genes within 5q31 are interleukin-4’s gene, interleukin-5’s gene, interleukin-13’s gene, CD14’s gene, granulocyte macrophage colony-stimulating factor’s gene and other genes. They are involved with the maturation and differentiation of the T –lymphocytes. The recent researches had shown that the increased levels of soluble CD14 were found in the inflammatory disease and inverse correlated with the total serum IgE concentrations. Despite that asthma is an inflammatory disease, the soluble CD14 levels among the asthmatics individuals are comparatively lower than non-asthmatics individuals. Besides that, the CD14/-159 C->T mutations had shown would affect the transcriptional activity of the genes. The associations between the CD14 genotype and diseases are frequently studied. However there are always show contradictory results. For example, A.Heinzmann and his colleagues found no associations between the CD14 genotype and asthma among the Caucassian children while the other groups pointed out that the total serum IgE concentration were higher in the individuals with CD14/-159 CC homozygous. Our previous data , which cooperated with other lab, showed no associations between the CD14/-159 and total serum IgE levels. Besides CD14/-159, other polymorphism sites were found. Among the identified polymorphism sites of CD14, CD14/-1145 and CD14/-1359 were frequently studies.In 2003, a published paper mentioned that CD14/-159 and CD14/-1359 were associated with allergic diseases which were mediated by the immunoglobulin E. Due to the contradicted results of the associations between CD14 genotype and asthma, we were strongly suspected that the associations are affected by the allergens. House dust mites are the major allergens who leading to the pathogenesis of asthma. Its fecal waste and the digestive enzymes are believed to be the major allergens. In order to determine the associations between the mite allergens and CD14 genotype, we first used the ELISA method to show that CD14 would bind with dust mite allergens. Later on, 240 individuals were collected and divided into 4 groups based on their clinical syndrome and the allergens’ test. These 4 groups were : 1.allergic asthma (N=60), 2. non-allergic asthma (N=60), 3. allergic without CD14 syndrome (N=60) and 4. non-allergic and non-asthma (N=60). Compare the distribution of soluble CD14 levels between the asthmatic and non-asthmatic individuals or mite-sensitized and non-mite sensitized individuals, we noticed there was no significant differences between the asthmatic and non-asthmatic individuals but significant differences between the mite-sensitized and non-mite sensitized individuals. After identified their genotypes, we compared the distribution of CD14 levels and total serum IgE levels among the different genotypes. As the result, the CD14/-1359 TT individuals were found to have higher concentration of the soluble CD14 and lower total serum IgE levels than CD14/-1359 GG or GT . If we compared the distribution of the genotypes between the asthmatics and non-asthmatics or mite-sensitized and non-mite sensitized individuals, we observed that it is significant differences between the CD14/-1359 and the mite-sensitization and the p value was below 0.05, therefore we could conclude that the CD14/-1359 was associated with the mite-sensitization. Using the PopGene and PyPop programs, we proved that these three polymorphism sites were in linkage disequilibrium. Therefore, it was necessary to evaluate the effect of the collaboration of CD14/-159, -1145 and -1359 towards the concentrations of the soluble CD14 and immunoglobulin E levels in the serum. Roughly, we showed that those carriers with CD14 -159CC/-1145AA/-1359TT were comparatively with lower soluble CD14 levels and higher total serum IgE levels compared to CD14 -159TT/-1145GG/-1359GG. Therefore, we suggest that CD14 genotypes were associated with the mite-sensitization.
References :
1. KD. Y. Childhood asthma: aspects of global environment, genetics and management. Changgeng Yi Xue Za Zhi 2000 Nov; 23:641-61.
2. Gern JE RC, Hoffjan S, Nicolae D, Li Z, Roberg KA, Neaville WA, Carlson-Dakes K, Adler K, Hamilton R, Anderson E, Gilbertson-White S, Tisler C, Dasilva D, Anklam K, Mikus LD, Rosenthal LA, Ober C, Gangnon R, Lemanske RF Jr. Effects of dog ownership and genotype on immune development and atopy in infancy. J Allergy Clin Immunol. 2004 Feb; 113:307-14.
3. Lee YL LY, Hsiue TR, Hwang BF, Guo YL. Indoor and outdoor environmental exposures, parental atopy, and physician-diagnosed asthma in Taiwanese schoolchildren. Pediatrics. 2003 Nov; 112:e389.
4. Bochner BS, Undem BJ, Lichtenstein LM. Immunological aspects of allergic asthma. Annu Rev Immunol 1994; 12:295-335.
5. Corry DB KF. Induction and regulation of the IgE response. Nature 1999; 402:B18-23.
6. Barnes PJ, Chung KF, Page CP. Inflammatory mediators of asthma: an update. Pharmacol Rev 1998; 50:515-96.
7. Galli SJ CJ. Mast-cell-leukocyte cytokine cascades in allergic inflammation. Allergy. 1995; 50:851-62.
8. Sporik R CM, Platts-Mills TA. House dust mite exposure as a cause of asthma. Clin Exp Allergy 1992; 22:897-906.
9. Gough L, Campbell E, Bayley D, Van Heeke G, Shakib F. Proteolytic activity of the house dust mite allergen Der p 1 enhances allergenicity in a mouse inhalation model. Clin Exp Allergy 2003; 33:1159-63.
10. Lee YL LY, Hsiue TR, Hwang BF, Guo YL. Indoor and Outdoor Environmental Exposures, Parental Atopy, and Physician-Diagnosed Asthma in Taiwanese Schoolchildren. Pediatrics. 2003; 112:e389.
11. Sears MR HG, Holdaway MD, Hewitt CJ, Flannery EM, Silva PA. The relative risks of sensitivity to grass pollen, house dust mite and cat dander in the development of childhood asthma. Clin Exp Allergy 1989; 19:419-24.
12. Marsh DG NJ, Breazeale DR, Ghosh B, Freidhoff LR, Ehrlich-Kautzky E, Schou C, Krishnaswamy G, Beaty TH. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 1994; 264:1152-6.
13. Meyers DA PD, Panhuysen CI, Xu J, Amelung PJ, Levitt RC, Bleecker ER. Evidence for a locus regulating total serum IgE levels mapping to chromosome 5. Genomics. 1994; 23:464-70.
14. Daniels SE, Bhattacharrya S, James A, Leaves NI, Young A, Hill MR, et al. A genome-wide search for quantitative trait loci underlying asthma. Nature 1996; 383:247-50.
15. Ober C CN, Abney M, Di Rienzo A, Lander ES, Changyaleket B, Gidley H, Kurtz B, Lee J, Nance M, Pettersson A, Prescott J, Richardson A, Schlenker E, Summerhill E, Willadsen S, Parry R. Genome-wide search for asthma susceptibility loci in a founder population. The Collaborative Study on the Genetics of Asthma. Hum Mol Genet 1998; 7:1393-8.
16. Wjst M, Fischer G, Immervoll T, Jung M, Saar K, Rueschendorf F, et al. A genome-wide search for linkage to asthma. German Asthma Genetics Group. Genomics 1999; 58:1-8.
17. A genome-wide search for asthma susceptibility loci in ethnically diverse populations. The Collaborative Study on the Genetics of Asthma (CSGA). Nat Genet 1997; 15:389-92.
18. Dizier MH, Besse-Schmittler C, Guilloud-Bataille M, Annesi-Maesano I, Boussaha M, Bousquet J, et al. Genome screen for asthma and related phenotypes in the French EGEA study. Am J Respir Crit Care Med 2000; 162:1812-8.
19. Hizawa N FL, Chiu YF, Ehrlich E, Luehr CA, Anderson JL, Duffy DL, Dunston GM, Weber JL, Huang SK, Barnes KC, Marsh DG, Beaty TH. Genetic regulation of Dermatophagoides pteronyssinus-specific IgE responsiveness: a genome-wide multipoint linkage analysis in families recruited through 2 asthmatic sibs. Collaborative Study on the Genetics of Asthma (CSGA). J Allergy Clin Immunol. 1998; 102:436-42.
20. Marsh DG, Neely JD, Breazeale DR, Ghosh B, Freidhoff LR, Ehrlich-Kautzky E, et al. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 1994; 264:1152-6.
21. Martinez FD SS, Holberg CJ, Graves PE, Baldini M, Erickson RP. Linkage of circulating eosinophils to markers on chromosome 5q. Am J Respir Crit Care Med. 1998; 158:1739-44.
22. Marquet S, Abel L, Hillaire D, Dessein H, Kalil J, Feingold J, et al. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33. Nat Genet 1996; 14:181-4.
23. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 249:1431-3.
24. RR. S. Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol 1992; 143:11-5.
25. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995; 13:437-57.
26. Noguchi E SM, Arinami T, Takeda K, Maki T, Miyamoto T, Kawashima T, Kobayashi K, Hamaguchi H. Evidence for linkage between asthma/atopy in childhood and chromosome 5q31-q33 in a Japanese population. Am J Respir Crit Care Med 1997; 156:1390-3.
27. Postma DS, Bleecker ER, Amelung PJ, Holroyd KJ, Xu J, Panhuysen CI, et al. Genetic susceptibility to asthma--bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med 1995; 333:894-900.
28. da Silva Correia J SK, Christen U, Tobias PS, Ulevitch RJ. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem 2001; 276:21129-35.
29. Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 2002; 23:301-4.
30. Haziot A, Tsuberi BZ, Goyert SM. Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. J Immunol 1993; 150:5556-65.
31. Tobias PS UR. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology 1993; 187:227-32.
32. Schumann RR, Rietschel ET, Loppnow H. The role of CD14 and lipopolysaccharide-binding protein (LBP) in the activation of different cell types by endotoxin. Med Microbiol Immunol (Berl) 1994; 183:279-97.
33. Verhasselt V BC, Willems F, De Groote D, Haeffner-Cavaillon N, Goldman M. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J Immunol 1997; 158:2919-25.
34. Sugawara S, Sugiyama A, Nemoto E, Rikiishi H, Takada H. Heterogeneous expression and release of CD14 by human gingival fibroblasts: characterization and CD14-mediated interleukin-8 secretion in response to lipopolysaccharide. Infect Immun 1998; 66:3043-9.
35. Kawai K, Shimura H, Minagawa M, Ito A, Tomiyama K, Ito M. Expression of functional Toll-like receptor 2 on human epidermal keratinocytes. J Dermatol Sci 2002; 30:185-94.
36. Funda DP TL, Farre MA, Iwase T, Moro I, Tlaskalova-Hogenova H. CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infect Immun 2001; 69:3772-81.
37. Simmons DL TS, Tenen DG, Nicholson-Weller A, Seed B. Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood 1989; 73:284-9.
38. Haziot A CS, Ferrero E, Low MG, Silber R, Goyert SM. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol 1988; 141:547-52.
39. Bazil V HV, Baudys M, Kristofova H, Strominger JL, Kostka W, Hilgert I. Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen. Eur J Immunol 1986; 16:1583-9.
40. Bazil V BM, Hilgert I, Stefanova I, Low MG, Zbrozek J, Horejsi V. Structural relationship between the soluble and membrane-bound forms of human monocyte surface glycoprotein CD14. Mol Immunol 1989; 26:657-62.
41. Durieux JJ, Vita N, Popescu O, Guette F, Calzada-Wack J, Munker R, et al. The two soluble forms of the lipopolysaccharide receptor, CD14: characterization and release by normal human monocytes. Eur J Immunol 1994; 24:2006-12.
42. Stelter F PM, Bernheiden M, Jack RS, Bufler P, Engelmann H, Schutt C. The myeloid differentiation antigen CD14 is N- and O-glycosylated. Contribution of N-linked glycosylation to different soluble CD14 isoforms. Eur J Biochem 1996; 236:457-64.
43. Pugin J S-MC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A. 1993; 90:2744-8.
44. Tapping RI, Tobias PS. Cellular binding of soluble CD14 requires lipopolysaccharide (LPS) and LPS-binding protein. J Biol Chem 1997; 272:23157-64.
45. Vita N, Lefort S, Sozzani P, Reeb R, Richards S, Borysiewicz LK, et al. Detection and biochemical characteristics of the receptor for complexes of soluble CD14 and bacterial lipopolysaccharide. J Immunol 1997; 158:3457-62.
46. Weidemann B, Schletter J, Dziarski R, Kusumoto S, Stelter F, Rietschel ET, et al. Specific binding of soluble peptidoglycan and muramyldipeptide to CD14 on human monocytes. Infect Immun 1997; 65:858-64.
47. Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 1998; 392:505-9.
48. Bufler P SG, Schuchmann M, Hess S, Kruger C, Stelter F, Eckerskorn C, Schutt C, Engelmann H. Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants. Eur J Immunol 1995; 25:604-10.
49. Takai N KM, Higuchi Y, Matsuura K, Yamamoto S. Primary structure of rat CD14 and characteristics of rat CD14, cytokine, and NO synthase mRNA expression in mononuclear phagocyte system cells in response to LPS. J Leukoc Biol 1997; 61:736-44.
50. Minetti CA, Lin YA, Cislo T, Liu TY. Purification and characterization of an endotoxin-binding protein with protease inhibitory activity from Limulus amebocytes. J Biol Chem 1991; 266:20773-80.
51. Takeshita S NK, Tsujimoto H, Kawamura Y, Kawase H, Sekine I. Increased levels of circulating soluble CD14 in Kawasaki disease. Clin Exp Immunol 2000; 119:376-81.
52. Wuthrich B KM, Joller-Jemelka H. Soluble CD14 but not interleukin-6 is a new marker for clinical activity in atopic dermatitis. Arch Dermatol Res 1992; 284:339-42.
53. Oesterreicher C, Pfeffel F, Petermann D, Muller C. Increased in vitro production and serum levels of the soluble lipopolysaccharide receptor sCD14 in liver disease. J Hepatol 1995; 23:396-402.
54. Horneff G SU, Kalden JR, Emmrich F, Burmester GR. Reduction of monocyte-macrophage activation markers upon anti-CD4 treatment. Decreased levels of IL-1, IL-6, neopterin and soluble CD14 in patients with rheumatoid arthritis. Clin Exp Immunol 1993; 91:207-13.
55. Rey Nores JE BA, Vita N, Stelter F, Arias MA, Jones M, Lefort S, Borysiewicz LK, Ferrara P, Labeta MO. Soluble CD14 acts as a negative regulator of human T cell activation and function. Eur J Immunol 1999; 29:265-76.
56. Arias MA RNJ, Vita N, Stelter F, Borysiewicz LK, Ferrara P, Labeta MO. Cutting edge: human B cell function is regulated by interaction with soluble CD14: opposite effects on IgG1 and IgE production. J Immunol 2000; 164:3480-6.
57. O'Donnell AR TB, Marks GB, Hayden CM, Laing IA, Peat JK, Goldblatt J, Le Souef PN. Age-specific relationship between CD14 and atopy in a cohort assessed from age 8 to 25 years. Am J Respir Crit Care Med 2004; 169:615-22.
58. Baldini M LI, Halonen M, Erickson RP, Holt PG, Martinez FD. A Polymorphism* in the 5' flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol 1999; 20:976-83.
59. Koppelman GH, Reijmerink NE, Colin Stine O, Howard TD, Whittaker PA, Meyers DA, et al. Association of a promoter polymorphism of the CD14 gene and atopy. Am J Respir Crit Care Med 2001; 163:965-9.
60. LeVan TD, Bloom JW, Bailey TJ, Karp CL, Halonen M, Martinez FD, et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol 2001; 167:5838-44.
61. Woo JG AaA, Heizer AB, Bernstein JA, Hershey GK. The -159 C-->T polymorphism of CD14 is associated with nonatopic asthma and food allergy. J Allergy Clin Immunol. 2003; 112:438-44.
62. Eng HL, Chen CH, Kuo CC, Wu JS, Wang CH, Lin TM. Association of CD14 promoter gene polymorphism and Chlamydia pneumoniae infection. J Infect Dis 2003; 188:90-7.
63. Karhukorpi J YY, Niemela S, Valtonen J, Koistinen P, Joensuu T, Saikku P, Karttunen R. Effect of CD14 promoter polymorphism and H. pylori infection and its clinical outcomes on circulating CD14. Clin Exp Immunol 2002; 128:326-32.
64. Ahrens P KE, Kohler B, Hartel C, Seidenberg J, Segerer H, Moller J, Gopel W; Genetic Factors in Neonatology Study Group. Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr Res 2004; 55:652-6.
65. Heinzmann A DH, Jerkic SP, Kurz T, Deichmann KA. Promoter polymorphisms of the CD14 gene are not associated with bronchial asthma in Caucasian children. Eur J Immunogenet 2003; 30:345-8.
66. YEH FC, YANG, R-C., BOYLE, TIMOTHY, B.J., YE, Z-H., and MAO, JUDY X. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada 1997.
67. YEH FCaB, T.J.B. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany 1997; 129:157.
68. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, et al. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 2004; 108:501-15.
69. Cunningham MD, Shapiro RA, Seachord C, Ratcliffe K, Cassiano L, Darveau RP. CD14 employs hydrophilic regions to "capture" lipopolysaccharides. J Immunol 2000; 164:3255-63.
70. Vercelli D BM, Martinez F. The monocyte/IgE connection: may polymorphisms in the CD14 gene teach us about IgE regulation? Int Arch Allergy Immunol 2001; 124:20-4.