| 研究生: |
馬寧佑 Beh, Ning |
|---|---|
| 論文名稱: |
探討USP24在脂質代謝中所扮演的角色及分子機制 Studying the Role and Molecular Mechanism of USP24 in Lipid Metabolism |
| 指導教授: |
洪建中
Hung, Jan-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 肥胖症 、脂肪肝 、脂質代謝 、脂肪新生 、USP24 |
| 外文關鍵詞: | Obesity, NAFLD, lipid metabolism, adipogenesis, USP24 |
| ORCID: | 0009-0003-5116-3475 |
| 相關次數: | 點閱:75 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肥胖是現今社會重大的疾病。肥胖往往牽涉了代謝失調,因而導致脂肪肝,心血管疾病,各種類的癌症等其他疾病。據世界衛生組織在2022年的統計,全球超過約十億人患有肥胖症,但目前卻缺乏了有效治療肥胖症導致的代謝失調和脂肪肝的藥物。實驗室早期的結果發現剔除USP24會在小鼠中引發自噬作用,且小鼠體重及體脂肪較低。據此推測USP24可能在脂質代謝中扮演重要的角色。爲深入探討USP24在脂質代謝中的角色,本研究利用新穎USP24抑制劑治療高脂肪飼料誘導肥胖的小鼠,發現USP24抑制劑有效的降低小鼠體重,肝臟脂肪和體脂肪細胞大小。本研究對剔除USP24肥胖小鼠的肝臟進行次世代RNA定序分析,發現USP24剔除顯著降低肝臟的脂肪酸代謝,不飽和脂肪酸新合成及發炎反應的基因表達,顯示USP24可能參與在脂肪肝的發展。最後,USP24在3T3-L1細胞脂肪新生中表現量增加,抑制USP24則阻斷脂肪新生過程。進一步探討發現USP24可能透過增加CREB的磷酸化和穩定p300蛋白,增加CREB的轉錄活性,透過CREB-C/EBPβ-PPARγ途徑增加脂肪新生。本研究願透過瞭解USP24在脂質代謝和脂肪新生的角色和分子機制,以USP24為標靶,研發有效治療肥胖症,脂肪肝和脂肪肝炎的藥物。
Obesity is a major health concern affecting billions worldwide. Obesity is associated with metabolic dysregulation and may increase risks of fatty liver, cardiovascular disease, and various forms of cancers. However, there is currently little pharmacological method to treat obesity related metabolic diseases and fatty liver diseases. Our previous data showed that USP24 knockout mice exhibit enhanced autophagic activity, lower body weight and body fat content, we hypothesize that USP24 may play a major role in lipid metabolism. First, in this study, USP24 inhibition using novel USP24 inhibitor significantly decreased body weight and body fat content in mice, consistent with results from USP24 knockout mice. Furthermore, USP24 inhibitor treatment decreased white adipocyte cell size and reduced lipid droplet accumulation in high fat diet mice, indicating USP24 involvement in lipid metabolism. Next, RNA sequencing of liver tissues in USP24 knockout high fat diet mice revealed significant downregulation of fatty acid metabolic genes and inflammatory genes compared to USP24 wild type mice, indicating attenuation of NALFD and NASH symptoms. Finally, this study showed that USP24 is upregulated during 3T3-L1 adipogenesis and inhibition of USP24 prevented adipocyte differentiation. USP24 positively regulates early stages of differentiation through involvement in the CREB-C/EBPβ-PPARγ axis via increase in phospho-CREB protein and stabilizing p300, thereby increasing the transcriptional activity of CREB. This study seeks to elucidate the detailed role and molecular mechanism of USP24 in lipid metabolism and showed that targeting USP24 to be a potential treatment for obesity, NAFLD and NASH.
Caballero, B. Humans against Obesity: Who Will Win? Adv Nutr 10, S4-s9, 2019.
Chalasani, N., Younossi, Z., Lavine, J.E., Charlton, M., Cusi, K., Rinella, M., Harrison, S.A., Brunt, E.M., and Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328-357, 2018.
Chang, B.H., Li, L., Paul, A., Taniguchi, S., Nannegari, V., Heird, W.C., and Chan, L. Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol Cell Biol 26, 1063-1076, 2006.
Chang, B.H., Li, L., Saha, P., and Chan, L. Absence of adipose differentiation related protein upregulates hepatic VLDL secretion, relieves hepatosteatosis, and improves whole body insulin resistance in leptin-deficient mice. J Lipid Res 51, 2132-2142, 2010.
Charni-Natan, M., and Goldstein, I. Protocol for Primary Mouse Hepatocyte Isolation. STAR Protoc 1, 100086, 2020.
Cooke, D., and Bloom, S. The obesity pipeline: current strategies in the development of anti-obesity drugs. Nature Reviews Drug Discovery 5, 919-931, 2006.
Eynaudi, A., Díaz-Castro, F., Bórquez, J.C., Bravo-Sagua, R., Parra, V., and Troncoso, R. Differential Effects of Oleic and Palmitic Acids on Lipid Droplet-Mitochondria Interaction in the Hepatic Cell Line HepG2. Frontiers in Nutrition 8, 2021.
Flowers, M.T., and Ntambi, J.M. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol 19, 248-256, 2008.
García-Montero, C., Fraile-Martínez, O., Gómez-Lahoz, A.M., Pekarek, L., Castellanos, A.J., Noguerales-Fraguas, F., Coca, S., Guijarro, L.G., García-Honduvilla, N., Asúnsolo, A., Sanchez-Trujillo, L., Lahera, G., Bujan, J., Monserrat, J., Álvarez-Mon, M., Álvarez-Mon, M.A., and Ortega, M.A. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 13, 2021.
Gómez-Lechón, M.J., Donato, M.T., Martínez-Romero, A., Jiménez, N., Castell, J.V., and O'Connor, J.E. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact 165, 106-116, 2007.
Green, H., and Meuth, M. An established pre-adipose cell line and its differentiation in culture. Cell 3, 127-133, 1974.
Hillian, A.D., McMullen, M.R., Sebastian, B.M., Roychowdhury, S., Kashyap, S.R., Schauer, P.R., Kirwan, J.P., Feldstein, A.E., and Nagy, L.E. Mice lacking C1q are protected from high fat diet-induced hepatic insulin resistance and impaired glucose homeostasis. J Biol Chem 288, 22565-22575, 2013.
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860-867, 2006.
Jeon, Y.G., Kim, Y.Y., Lee, G., and Kim, J.B. Physiological and pathological roles of lipogenesis. Nat Metab 5, 735-759, 2023.
Jung, Y., Zhao, M., and Svensson, K.J. Isolation, culture, and functional analysis of hepatocytes from mice with fatty liver disease. STAR Protoc 1, 100222, 2020.
Kachur, S., Lavie, C.J., de Schutter, A., Milani, R.V., and Ventura, H.O. Obesity and cardiovascular diseases. Minerva Med 108, 212-228, 2017.
Kim, K.H., and Lee, M.S. Autophagy--a key player in cellular and body metabolism. Nat Rev Endocrinol 10, 322-337, 2014.
Kitamura, H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 24, 2023.
Li, D., Xie, P., Zhao, S., Zhao, J., Yao, Y., Zhao, Y., Ren, G., and Liu, X. Hepatocytes derived increased SAA1 promotes intrahepatic platelet aggregation and aggravates liver inflammation in NAFLD. Biochem Biophys Res Commun 555, 54-60, 2021.
Loomba, R., Friedman, S.L., and Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184, 2537-2564, 2021.
Maggio, C.A., and Pi-Sunyer, F.X. Obesity and type 2 diabetes. Endocrinol Metab Clin North Am 32, 805-822, viii, 2003.
McManaman, J.L., Bales, E.S., Orlicky, D.J., Jackman, M., MacLean, P.S., Cain, S., Crunk, A.E., Mansur, A., Graham, C.E., Bowman, T.A., and Greenberg, A.S. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J Lipid Res 54, 1346-1359, 2013.
Mead, J.F. LIPID METABOLISM. Annu Rev Biochem 32, 241-268, 1963.
Merry, T.L., Tran, M., Dodd, G.T., Mangiafico, S.P., Wiede, F., Kaur, S., McLean, C.L., Andrikopoulos, S., and Tiganis, T. Hepatocyte glutathione peroxidase-1 deficiency improves hepatic glucose metabolism and decreases steatohepatitis in mice. Diabetologia 59, 2632-2644, 2016.
Moravcová, A., Červinková, Z., Kučera, O., Mezera, V., Rychtrmoc, D., and Lotková, H. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture. Physiol Res 64, S627-636, 2015.
Muir, L.A., Neeley, C.K., Meyer, K.A., Baker, N.A., Brosius, A.M., Washabaugh, A.R., Varban, O.A., Finks, J.F., Zamarron, B.F., Flesher, C.G., Chang, J.S., DelProposto, J.B., Geletka, L., Martinez-Santibanez, G., Kaciroti, N., Lumeng, C.N., and O'Rourke, R.W. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity (Silver Spring) 24, 597-605, 2016.
Najt, C.P., Senthivinayagam, S., Aljazi, M.B., Fader, K.A., Olenic, S.D., Brock, J.R., Lydic, T.A., Jones, A.D., and Atshaves, B.P. Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 310, G726-738, 2016.
Nicholas, S.B. Lipid disorders in obesity. Curr Hypertens Rep 1, 131-136, 1999.
Park, J.S., Lee, W.K., Kim, H.S., Seo, J.A., Kim, D.H., Han, H.C., and Min, B.H. Clusterin overexpression protects against western diet-induced obesity and NAFLD. Sci Rep 10, 17484, 2020.
Paton, C.M., and Ntambi, J.M. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297, E28-37, 2009.
Paz, J.C., Park, S., Phillips, N., Matsumura, S., Tsai, W.W., Kasper, L., Brindle, P.K., Zhang, G., Zhou, M.M., Wright, P.E., and Montminy, M. Combinatorial regulation of a signal-dependent activator by phosphorylation and acetylation. Proc Natl Acad Sci U S A 111, 17116-17121, 2014.
Polyzos, S.A., Kountouras, J., and Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism 92, 82-97, 2019.
Poti, J.M., Braga, B., and Qin, B. Ultra-processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content? Curr Obes Rep 6, 420-431, 2017.
Reed, B.C., and Lane, M.D. Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 77, 285-289, 1980.
Reusch, J.E., Colton, L.A., and Klemm, D.J. CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol 20, 1008-1020, 2000.
Reyes-Turcu, F.E., Ventii, K.H., and Wilkinson, K.D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78, 363-397, 2009.
Ruiz, R., Jideonwo, V., Ahn, M., Surendran, S., Tagliabracci, V.S., Hou, Y., Gamble, A., Kerner, J., Irimia-Dominguez, J.M., Puchowicz, M.A., DePaoli-Roach, A., Hoppel, C., Roach, P., and Morral, N. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J Biol Chem 289, 5510-5517, 2014.
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675, 2012.
Sen, U., Coleman, C., and Sen, T. Stearoyl coenzyme A desaturase-1: multitasker in cancer, metabolism, and ferroptosis. Trends Cancer 9, 480-489, 2023.
Shimano, H., Yahagi, N., Amemiya-Kudo, M., Hasty, A.H., Osuga, J., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., Harada, K., Gotoda, T., Ishibashi, S., and Yamada, N. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 274, 35832-35839, 1999.
Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. Autophagy regulates lipid metabolism. Nature 458, 1131-1135, 2009.
Singh, S., Karthikeyan, C., and Moorthy, N. Fatty Acid Synthase (FASN): A Patent Review Since 2016-Present. Recent Pat Anticancer Drug Discov, 2023.
Song, Z., Xiaoli, A.M., and Yang, F. Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients 10, 2018.
Srivastava, G., and Apovian, C.M. Current pharmacotherapy for obesity. Nature Reviews Endocrinology 14, 12-24, 2018.
Tao, T., and Xu, H. Autophagy and Obesity and Diabetes. Adv Exp Med Biol 1207, 445-461, 2020.
Thayer, J.A., Awad, O., Hegdekar, N., Sarkar, C., Tesfay, H., Burt, C., Zeng, X., Feldman, R.A., and Lipinski, M.M. The PARK10 gene USP24 is a negative regulator of autophagy and ULK1 protein stability. Autophagy 16, 140-153, 2020.
Vanauberg, D., Schulz, C., and Lefebvre, T. Involvement of the pro-oncogenic enzyme fatty acid synthase in the hallmarks of cancer: a promising target in anti-cancer therapies. Oncogenesis 12, 16, 2023.
Wang, G., Bonkovsky, H.L., de Lemos, A., and Burczynski, F.J. Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res 56, 2238-2247, 2015.
Wang, S.A., Young, M.J., Jeng, W.Y., Liu, C.Y., and Hung, J.J. USP24 stabilizes bromodomain containing proteins to promote lung cancer malignancy. Sci Rep 10, 20870, 2020.
Wang, S.A., Young, M.J., Wang, Y.C., Chen, S.H., Liu, C.Y., Lo, Y.A., Jen, H.H., Hsu, K.C., and Hung, J.J. USP24 promotes drug resistance during cancer therapy. Cell Death Differ 28, 2690-2707, 2021.
Wang, Y.C., Wu, Y.S., Hung, C.Y., Wang, S.A., Young, M.J., Hsu, T.I., and Hung, J.J. USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat Commun 9, 3996, 2018.
White, U. Adipose tissue expansion in obesity, health, and disease. Front Cell Dev Biol 11, 1188844, 2023.
Wilson, C.G., Tran, J.L., Erion, D.M., Vera, N.B., Febbraio, M., and Weiss, E.J. Hepatocyte-Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-Fed Mice. Endocrinology 157, 570-585, 2016.
Wong, W.K., and Chan, W.K. Nonalcoholic Fatty Liver Disease: A Global Perspective. Clin Ther 43, 473-499, 2021.
Yilmaz, Y., Eren, F., Yonal, O., Polat, Z., Bacha, M., Kurt, R., Ozturk, O., and Avsar, E. Serum progranulin as an independent marker of liver fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease. Dis Markers 31, 205-210, 2011.
Zebisch, K., Voigt, V., Wabitsch, M., and Brandsch, M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 425, 88-90, 2012.