| 研究生: |
鄧宇辰 Deng, Yu-Chen |
|---|---|
| 論文名稱: |
以小角X-ray散射探討高分子液相於溶液中的分佈 Study on the distribution of coexistent polymeric liquid phases in solutions by Small-angle X-ray Scattering |
| 指導教授: |
阮至正
Ruan, Jr-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 小角度X光散射 、聚甲基丙烯酸甲酯 、聚已基噻吩 、相分離 |
| 外文關鍵詞: | P3HT, PMMA, SAXS, liquid phase separation |
| 相關次數: | 點閱:94 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究希望藉由小角度X光散射於奈米尺度下的解析特性,觀察不相容的共軛半導體高分子P3HT與絕緣高分子PMMA是否於甲苯溶液中形成各自的液相,以及可能的液相分佈情形。並進一步探討,添加的奈米碳管是否會於溶液中選擇性的分佈於特定液相中。
從不同濃度下分別討論P3HT與PMMA溶解於甲苯溶液內的情形。PMMA分子於溶液中的鏈團形狀不受溶液濃度而改變,然而橢盤狀鏈團的平均迴轉半徑(Rg)會隨濃度提升而下降。而當P3HT溶於甲苯溶劑時,由於P3HT與甲苯溶劑親和性較差,鏈團於溶劑中的形狀會隨濃度而變化。隨著溶液濃度的提高,P3HT扁盤狀鏈團逐漸趨向橢圓柱狀並進一步轉變為較長的柱狀鏈團,鏈團的尺寸亦隨濃度變化有不同的大小。
接著以純P3HT與PMMA液相之散射強度為依據,理論計算含有不同體積分率的P3HT與PMMA液相之混摻溶液的散射強度。與實驗獲得之混摻溶液的散射曲線相比後發現,理論計算曲線與實驗曲線於全q值區間Power law散射曲線的斜率變化皆相同。表示混摻溶液內分子鏈團的形狀與大小皆不受混摻比例的影響。可推論,P3HT與PMMA形成各自的液相分佈於溶液中,分子鏈團並不互相影響。
另一方面,兩相溶液中PMMA成份體積分率的減少,會使得散射曲線計算之K值逐漸下降。在兩相散射密度不變的前提下,意味著兩相界面面積會隨PMMA體積分率而改變。進一步藉由薄膜形態的觀察,確認隨著PMMA體積分率下降,PMMA的團狀區域尺寸減小,造成界面面積減小,和小角度散射觀察結果相符。
在P3HT/PMMA混摻溶液加入奈米碳管的系統內,添加的奈米碳管會選擇性的分佈於共軛高分子的液相之中,此點可由散射起始強度數值與P3HT液相體積分率的關係得知。然而,共軛高分子液相的體積分率,將影響懸浮於溶液中奈米碳管的含量,進而導致整體液相的散射強度隨著P3HT液相體積的增加而增加。
關鍵詞: 小角度X光散射,聚甲基丙烯酸甲酯,聚已基噻吩,相分離
SUMMARY
The liquid phase separation behavior in solution system of poly(3-hexylthiophene-2,5-diyl)(P3HT) and poly(methyl methacrylate)(PMMA) have been explored. The solvent affinity was a critical factor for the conformation change of dissolved polymer molecule, which provides the essential condition to elucidate the occurrence of phase separation in solution. By fitting the calculation of sorted polymer solution with the binary solution system, the liquid phases are stable staying in the blend system and the electron density of phases do not be influenced by the blend ratio. The trend of surface area change by Porod analysis is same with the observation in the thin film. Upon obtained results, polymer liquid phases are independent in blend system and do not affect each other. Furthermore, the suspended CNTs contents were related with the volume ratio of P3HT component in the solution and do not change the liquid phase distribution in the solution, which is a strength evidence to confirm the occurrence of phase separation in solution. In summary, the liquid phase of two polymer components in blend system have not been unveiled by SAXS analysis before. The SAXS analysis in solution experiment is a helpful method for similar binary system of liquid state.
Key words: P3HT, PMMA, SAXS, liquid phase separation
1. Normal distribution Web:https://en.wikipedia.org/wiki/Normal_distribution
2. 鄭有舜, X-光小角度散射在軟物質研究上的應用,物理雙月刊, 2004, 26(2), 416-424.
3. 陳信龍, 鄭有舜, 小角度X光散射在高分子奈米結構解析之應用, 2007, 29(2), 18-28
4. 劉俊佑, 孫亞賢, 小角度散射原理, 2014, 2(1), 5-9
5. R. J. Roe (2000). Method of x-ray and neutron scattering in polymer science. Chapter 1 and 5. Oxford university press. New York.
6. G. Strobl (2007). The physics of polymer:concepts for understanding their structure and behavior (3rd ed). Chapter 1 and 3. Springer. U. K.
7. M. Rubinstein; R. H. Colby (2003). The polymer physics. Chapter 4. Oxford university press. New York.
8. P. Lindner; T. Zemb (2004). Neutrons, x-rays and light:scattering methods applied to soft condensed matter(2rd ed). Chapter 3. Elsevier B.V. Netherlands.
9. I. Teraoka (2002). Polymer solutions : an introduction to physical properties. chapter 2 and 3. Wiley. New York.
10. L. A. Feigin and D. I. Svergun (1987). Structure analysis by small-angle x-ray and neutron scattering. Chapter 2 and 3. Plenum Press. New York.
11. What is measured in a small angle xray scattering ? http://iramis.cea.fr/Phocea/Vie_des_labos/Ast/ast_sstechnique.php?id_ast=1065
12. G. L Hura, A. L Menon, M. Hammel, R. P Rambo, F. L Poole, S. E Tsutakawa, F. E J. Jr, S. Classen1, K. A Frankel, R. C Hopkins, S. J. Yang, J. W Scott, B. D Dillard, M. W W Adams, J. A Tainer Robust High-throughput solution structural analyses by small angle x-ray scattering (SAXS). Nature Methods. 2009, 6, 606.
13. Y. Amemiya and Y. Shinohara (2010). Small-angle x-ray scattering basics & applications. Cheiron School.
14. D. Svergun (2012). Basics of x-ray scattering by solutions. EMBL-Hamburg.
15. P. Vachette (2010). Scattering of x-rays. EMBO.
16. B. Chu and B. S. Hsiao Small-angle x-ray scattering of polymers Chem. Rev. 2001, 101, 1727.
17. R. P. Rambo, J. A. Tainer Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the porod-debye law. Biopolymers 2011, 95, 559.
18. B. Morgan and M. D. Dadmun Illumination of conjugated polymer in solution alters its conformation and thermodynamics. Macromolecules 2016, 49, 3490.
19. Y. C. Li, K. B. Chen, H. L. Chen, C. S. Hsu, C. S. Tsao, J. H. Chen, S. A. Chen Fractal aggregates of conjugated polymer in solution state. Langmuir 2006, 22, 11009
20. Y. C. Li, C. Y. Chen, Y. X. Chang, P. Y. Chuang, J. H. Chen, H. L. Chen, C. S. Hsu, V. A. Ivanov, P. G. Khalatur, S. A. Chen Scattering study of the conformational structure and aggregation behavior of a conjugated polymer solution. Langmuir 2009, 25, 4668.
21. M. H. Rahman, C. Y. Chen, S. C. Liao, H. L. Chen, C. S. Tsao, J. H. Chen, J. L. Liao, V. A. Ivanov, S.A. Chen Segmental alignment in the aggregate domains of poly(9,9-dioctylfluorene) in semidilute solution. Macromolecules 2007, 40, 6572.
22. Y. W. Su, C. M. Liu, J. M. Jiang, C. S. Tsao, H. C. Cha, U. S. Jeng, H. L. Chen, K. H. Wei Structural evolution of crystalline conjugated polymer/fullerene domains from solution to the solid state in the presence and absence of an additive. J. Phys. Chem. C 2015, 119, 3408.
23. A. Y. Cherny, E. M. Anitas, V. A. Osipov, A. I. Kuklin Small-angle scattering from multi-phase fractals. J. Appl. Cryst. 2014, 47, 198.
24. C. Zhao, G. Hu, R. Justice, D. W. Schaefer, S. Zhang, M. Yang, C. C. Han Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer 2005, 46, 5125
25. J. Teixera Small-angle scattering by Fractal Systems. J. Appl. Cryst. 1988, 21, 781.
26. G. Beaucage, D. W. Schaefer Structural studies of complex systems using small-angle scattering: a unified guinier/power-law approach. J. Non-Cryst Solids 1994, 172, 797
27. G. Beaucage Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Cryst. 1995, 28, 717.
28. D. W. Schaefer, J.Z., J. M. Brown, D. P. Anderson, D. W. Tomlin Morphology of dispersed carbon single-walled nanotubes. Chemical Physics Letters 2003, 375, 369.
29. Mao-Yuan Chiu, U-Ser Jeng, Chiu-Hun Su, Keng S. Liang, and Kung-Hwa Wei Simultaneous use of small- and wide-angle x-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells. Adv. Mater. 2008, 20, 2573.
30. T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, Christoph aldauf, C. J. Brabec Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 2005, 15, 1193.
31. B. D. Cullity (1956). Elements of x-ray diffraction. Addison-Wesley.
32. D Chirvase, J Parisi, J C Hummelen, V Dyakonov Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 2004, 15, 1317.
33. H.C. Liao, C. S. Tsao, T. H. Lin, C. M. Chuang, C. Y. Chen, U.S. Jeng, C. H. Su, Y. F. Chen, W. F. Su Quantitative nanoorganized structural evolution for a high efficiency bulk heterojunction polymer solar cell. J. Am. Chem. Soc. 2011, 133, 13064.
34. P. Debye, H. R. Anderson Jr., H. Brumberger Scattering by an inhomogeneous solid. II. the correlation function and its application. J. Appl. Phys. 1957, 28, 679.
35. T.L. Lin,U. Jeng, C. S. Tsao, W. J. Liu, T. Canteenwala, L. Y. Chiang Effect of arm length on the aggregation structure of fullerene-based star ionomers. Phys. Chem. B 2004, 108, 14884.
36. W. L. Griffith, R. Triolo, and A. L. Compere Analytical scattering function of a polydisperse Percus-Yevick fiuid with Schulz- (I -) distributed diameters. Phys. Rev. A 1987, 35, 2200.
37. O. Glatter, O. Kratky (1982) Small-angle x-ray scattering. Academic Press: London.
38. G. Laudisio, R. K. Dash, J. P. Singer, G. Yushin, Y. Gogotsi, J. E. Fischer Carbide-derived carbons: a comparative study of porosity based on small-angle scattering and adsorption isotherms. Langmuir 2006, 22, 8945.