| 研究生: |
賴冠綸 Lai, Guan-Lun |
|---|---|
| 論文名稱: |
互補碼跳碼多工系統之性能分析 Performance Analysis of Code Hopping Multiple Access Based on Complementary Code System |
| 指導教授: |
陳曉華
Chen, Hsiao-Hwa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 跳碼多址 、互補碼 、漢明相關 、碰撞概率 、卷積碼(摺積碼) |
| 外文關鍵詞: | Code hopping multiple access (CHMA), Complementary codes, Hamming correlation (HC), Collision probability, Convolutional codes |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有別於傳統的碼分多址(CDMA)系統,跳碼多址(CHMA)是一種提供更高用戶容量的多址技術。我們搜尋了近十五年來關於跳碼多址的論文。在現有的CHMA系統方案中,在假設既不存在多徑干擾(MPI)也不存在多址干擾(MAI)的情況下,僅在同步信道中分析用戶信號之間的正交性。此外,任何用戶的展頻碼跳躍模式在其他論文中都是隨機的。為了克服現有CHMA方案中的MPI和MAI問題,首先我們提出利用互補碼(CC)在CHMA系統中擴頻,這裡稱為CC-CHMA。我們不僅考慮CC-CHMA系統中的單路徑而且考慮多徑方案。有別於其他的論文在高斯白雜訊通道分析,我們假設BPSK調製用於瑞利衰落信道上的發送編碼符號並分析其誤碼率(BER)性能。此外,還考慮了同步和異步信道。第二,我們提出了分配給活動用戶的周期性跳碼模式。之後藉由平均漢明相關(HC)來分析給定週期性跳碼模式的碼衝突概率。本文完整地推導了下行鏈路和上行鏈路CC-CHMA中誤碼率的解析公式。最後,我們還分析了卷積編碼環境中CC-CHMA系統的BER性能。仿真解析結果表示,在不同的操作場景下,具有信道編碼的CC-CHMA可以提供比CDMA系統高得多的用戶容量。特別是具有信道編碼的CC-CHMA在異步信道中具有優勢。
Different from the traditional code division multiple access (CDMA) system, code hopping multiple access (CHMA) system is a kind of multiple access technique to offer higher user capacity. We survey papers about code hopping in recent fifteen years. In existing CHMA system schemes, orthogonality among user signals is only analyzed in synchronous channels under an assumption that neither multipath interference (MPI) nor multiple-access interference (MAI) exists. Additionally, code hopping pattern for any user is assumed random in other papers. In order to overcome MI and MAI problems in existing CHMA schemes, we first propose to utilize complementary codes (CCs) to spread spectrum in CHMA systems, which is called CC-CHMA here. We consider not only the single path but multipath scheme in CC-CHMA system. In addition, both synchronous and asynchronous channels are considered. Distinguish from the performance analysis in AWGN channel in other papers, we assume that BPSK modulation is used for transmitted coded symbols over a Rayleigh fading channel and analyze its bit error rate (BER) performance. Second, we propose the periodic code hopping pattern assigned to active users. Afterwards, average hamming correlation (HC) is introduced to analyze the code collision probabilities for given periodic code hopping patterns. Analytical formulae of bit error rate (BER) in both downlink and uplink CC-CHMA are completely derived in the thesis. Finally, we also analyze the BER performance for CC-CHMA system in convolutional coding environments with rayleigh fading. Simulation results show that the CC-CHMA with channel coding can provide much higher user capacity than CDMA systems in varying operational scenarios. Especially, CC-CHMA with channel coding has advantages in asynchronous channels.
[1] S. Park and Dan Keun Sung, “Orthogonal code hopping multiplexing,” IEEE Communications Letters, vol. 6, issue 12, pp. 529-531, Dec. 2002.
[2] S. H. Moon, S. Park, J. K. Kwon, and D. K. Sung, “Capacity improvement in CDMA downlink with orthogonal code-hopping multiplexing,” IEEE Transactions on Vehicular
Technology., vol. 55, issue 2, pp. 510-527, Mar. 2006.
[3] J. K. Kwon, S. Park, D. K. Sung, and M. G. Kyeong, “Performance comparison of orthogonal code hopping multiplexing(OCHM) and HDR schemes in synchronous downlink,” Proceeding of WCNC 2002, Orlando, U.S.A., pp. 200-205, Mar. 2002.
[4] B. C. Jung, H. Jin, D. K. Sung, and S. Y. Chung, “Performance analysis of orthogonal code hopping multiplexing systems,” IEEE ICC2006, vol. 5, pp. 2078–2082, Jun. 2006.
[5] S. H. Moon, J. Kim, and D. K. Sung, “Performance analysis of orthogonal frequency and code hopping multiplexing,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3803–3815, Oct. 2007.
[6] B. C. Jung and D. K. Sung, “Performance analysis of orthogonal-code hopping multiplexing systems with repetition, convolutional, and turbo coding schemes,” IEEE Trans. on Vehcular Technology., vol. 57, issue 2, pp. 932-944, Mar. 2008.
[7] J. K. Kwon, S. Park, and Dan Keun Sung, “Log-likelihood ratio (LLR) conversion schemes in orthogonal code hopping multiplexing,” IEEE Communications Letters, (accepted for publication).
[8] J. K. Kwon, S. Park, D. K. Sung, and H. Lee, “Adaptive code rate for orthogonal code hopping multiplexing (OCHM) in synchronous downlink,” Proc. Wireless Communications and Networking Conf. (WCNC)., New Orleans, LA, Mar. pp. 855–859. 2003.
[9] X. Y. Jiang, “Code hopping communications for anti-interception with real-valued QZCZ sequences,” IEEE Trans. Commun., vol. 59, no. 3, pp. 680–685, Mar. 2011.
[10] H. H. Chen, H. M. Zhang, and Z. K. Huang, “Code-hopping multiple access based orthogonal complementary code,” IEEE Transactions on Vehicular Technology., vol. 61, no. 3, pp. 1074-1083, Mar. 2012.
[11] J. K. Kwon, S. Park, and D. K. Sung, “Collision mitigation by loglikelihood ratio (LLR) conversion in orthogonal code hopping multiplexing,” IEEE Trans. Veh. Technol., vol. 25, no. 2, Mar. 2006.
[12] B. C. Jung, S. S. Cho, and D. K. Sung, “Downlink capacity improvement through orthogonal code hopping multiplexing and multiple scrambling codes in CDMA systems,” Global Telecommunications Conference., Dec. 2006.
[13] B. C. Jung, S. S. Cho, and D. K. Sung, “Uplink capacity improvement through orthogonal code hopping in uplink-synchronized CDMA systems,” IEEE Trans.Wireless Commun., vol. 8, no. 11, pp. 5404–5410, Nov. 2009.
[14] Y. I. Seo, D. K. Sung, “A novel frame level orthogonal code hopping multiplexing scheme,” IEEE International Conference on Communications., vol. 4, pp. 2218-2222, 2005.
[15] S. H. Moon, J. K. Kwon, and D. K. Sung, “Synergy-perforation control for 16-QAM in orthogonal code hopping multiplexing,” IEEE Trans. on Vehicular Technology., vol. 56, no. 4, pp. 1704 - 1715, July 2007.
[16] S. H. Moon, S. Park, J. K. Kwon, J. Kim, and D. K. Sung, “Group-mode hopping for collision mitigation in orthogonal code-hopping multiplexing,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3830–3834, Sep. 2009.
[17] B. C. Jung, S. S. Cho, and D. K. Sung, “Performance comparison of downlink capacity improvement schemes- orthogonal code-hopping multiplexing versus multiple scrambling codes,” IEEE Trans. on Vehicular Technology., vol. 58, no. 2, pp. 670-681, Feb. 2009.
[18] S. H. Chung and P. J. McLane, “Code hopping–direct sequence spread spectrum to compensate for intersymbol interference in an ultrawideband system,” in Proc. IEEE Intl. Conf. on Commun. (ICC), Istanbul, Turkey, CT-1405, June 2006.
[19] S. H. Chung and Peter J. McLane, “Code hopping - direct sequence spread spectrum to compensate for intersymbol interference in an ultra-wideband system,” IEEE Transactions on communications., vol. 56, no. 11, Nov. 2008.
[20] M. Pausini, G. J. M. Janssen, and K.Witrisal, “Delay hopping and chip codes design for a frame differential UWB autocorrelation receiver,” in Proc. IEEE Int. Conf. Commun., Seoul, Korea, pp. 417–422, May 2005.
[21] C. Masouros and E. Alsusa, “Data-driven code-hopping for MC-CDMA precoding schemes,” IEEE Global Telecommunications Conference., pp1-5, 2008.
[22] C. Masouros and E. Alsusa, “A hybrid MC-CDMA precoding scheme employing code hopping and partial beamforming,” in Proc. IEEE Int. Conf. Commun., pp.1-5, 2009.
[23] C. Masouros and E. Alsusa, “Two-stage transmitter precoding based on data-driven code hopping and partial zero forcing beamforming for MC-CDMA communications,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3634 3645, July 2009.
[24] J. K. Tugnait and J. Ma, “Blind multiuser detection for code-hopping DS-CDMA signals in asynchronous multipath channels,” IEEE Trans. Wireless Commun., vol. 3, no. 2, pp. 466-476, Feb. 2004.
[25] S.Y. Sun, H.H. Chen and W.X. Meng, “A survey on complementary coded MIMO CDMA wireless communications,” IEEE Communications Survey and Tutorials, vol.17, no.1, pp.52-69, 2014.
[26] M. Golay, “Complementary series,” IRE Trans. Inf. Theory, vol. 7, no. 2, pp. 82–87, Apr. 1961.
[27] H. H. Chen, “The next generation CDMA technologies,” ISBN-978-0-470-02294-8, John Wiley and Sons Ltd, July 2007.
[28] N. Suehiro, “Complete complementary code composed of N-multiple-shift orthogonal sequences,” Transactions of IECE of Japan [in Japanese], vol. J65-A, 1247-1253.
[29] 梅文華, 楊義先, 周炯槃, “跳頻序列設計理論的研究進展,” 通信學報, vol. 24, no. 2, pp.92-101, Feb. 2003.
[30] G. Ge, Y. Miao, and Z. Yao, “Optimal frequency hopping sequences: auto- and cross-correlation properties,” IEEE Trans. Inf. Theory, vol.55, no. 2, pp. 867–879, Feb. 2009.
[31] A. Lempel and H. Greenberger, “Families of sequences with optimal Hamming correlation properties,” IEEE Trans. Inf. Theory, vol. 20, pp. 90–94, 1974.
[32] D. Peng and P. Fan, “Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences,” IEEE Trans. Inf. Theory, vol. 50, pp. 2149–2154, 2004.
[33] M. Georgiopoulos, “Packet error probabilities in frequency-hopped spread-spectrum packet radio networks- Memoryless frequency hopping patterns considered,” IEEE Tmns. Commun., vol. 36, pp. 720-723, June 1988.
[34] W. Cary Huffman and Vera Pless, “Fundamentals of error-correcting codes,” ISBN- 978-0511807077, Cambridge University Press, 2003.
[35] D. Y. Peng, X. H. Niu and X. H. Tang “Average Hamming correlation for the cubic polynomial hopping sequences,” IET Commun., vol.4, no. 15, pp. 1775-1786, Apr. 2010.
[36] Q. Zeng, H. Li, and D. Peng, “Frequency hopping based wireless metering in smart grid: code design and performance analysis,” IEEE Global Telecommunications Conference., Dec. 2011.
[37] Q. Zeng, H. Li, and D. Peng, “Frequency-hopping based communication network with multi-level QoSs in smart grid: code design and performance analysis,” Smart Grid, IEEE Transactions on, vol. 3, pp. 1841-1852, 2012.
[38] 鄭濤, 曾琦, “基於平均碰撞的偽隨機異步FH-CDMA 系性能分析,” 電信科學, 第7期, pp.78-81, 2016.
[39] D. J. Costello and S. Lin, Error Control Coding: Fundamental and Applications, 2nd ed. Englewood Cliffs, NJ: Prentice–Hall, 2004.
[40] Forney Jr., D.G., “The Viterbi algorithm”, Proc. IEEE, (61) pp. 268–278, March 1973.
[41] A. Papoulis and S. U. Pillai, “Probability, Random Variables, and Stochastic Processes,” New York: McGraw-Hill, 2002.
[42] A. Viterbi, “Convolutional codes and their performance in communication systems,” IEEE Dansactions on Communications, vol. 19, no. 5, pp. 751-772, October 1971.
[43] K. Deergha Rao, “Channel Coding Techniques for Wireless Communications,” DOI 10.1007/978-81-322-2292-7-2, Springer India 2015.
[44] A. Goldsmith, “Wireless Communications,” ISBN 9780511841224, Cambridge University, 2005.
[45] J. Craig, “New, simple and exact result for calculating the probability of error for two-dimensional signal constellations,” Proc. Milcom 1991.
[46] I. S. Gradshteyn and I. M. Ryzhik, “Table of Integrals, Series, and Products,” 5th ed. San Diego, CA: Academic Press, 1994.
[47] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 15),” 3GPP TS 36.104 V15.3.0, June 2018.
[48] J. P. Proakis, “Digital Communications, 3rd ed.” New York: McGraw-Hill,1995.
[49] J. Conan, “The weight spectra of some short low-rate convolutional codes,” IEEE Trans. Commun., vol. COM-32, pp. 1050–1053, Sep. 1984.
校內:2024-02-13公開