簡易檢索 / 詳目顯示

研究生: 陳梓銘
Cheng, Zhi-Ming
論文名稱: 台北都會區樁-筏基礎三維數值分析
Three-Dimensional Numerical Analysis of Piled Raft Fundations in Taipei Metropolitan
指導教授: 常正之
Charng, J.J.
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 235
中文關鍵詞: 樁筏基礎
外文關鍵詞: piled raft, un-piled
相關次數: 點閱:50下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 樁筏系統適於承載都會區軟弱土層上,大型建築物所傳遞之巨大荷重。本文採用台北國際金融大樓試樁試驗結果及樁筏配置,進行樁筏系統承載機制之研究。研究中,採用三維有限差分程式進行樁載重試驗及樁筏實際承載案例之數值模擬。數值分析中,所需之輸入參數先由樁載重試驗模擬結果與現地量測值比較後,求得基樁~土壤互制作用所需之界面及土層參數,並使用於爾後之群樁及樁筏系統之承載模擬。

    對單樁試樁模擬而言,載重~沉陷曲線、載重傳遞及各土層T-Z曲線,皆可得到良好模擬結果。以往之研究,忽略筏的承載貢獻並視載重全為群樁所承擔,本文探討筏對樁筏基礎分擔載重比例,做一系列的說明。在研究中,採用不同參數(如筏厚度、樁距、筏基上部載重等),探討其對筏基力學行為影響。在不同的條件下,可得到參數對於筏基的沉陷、沉陷影響因數、筏彎矩、群樁彎矩分佈和樁筏間載重分擔機制有顯著的影響。本研究得知沉陷與彎矩最大值發生於筏中心,且由筏外緣向中心漸增。同時,可比較樁筏和無樁筏基礎承載力學行為差異及群樁對於樁筏基礎在沉陷方面的改善。在樁筏載重分擔比例方面,在樁距固定下,隨著上部載重增加,筏分擔載重比例有明顯的增加。 

    Piled raft systems are often suitable as foundations for large buildings in soft soil.
    This study investigates the raft-pile-soil interaction for vertically loaded raft on layered Taipei subsoil. Conventional design of piled-raft foundation ignores bearing effect of raft and considers entire load to be carried by the piles. In this study, the load capacity of raft as well as pile group in piled raft system considered by three-dimensional finite difference analysis. The required input parameters for the analysis were back-calculated from the static pile loading testing. The numerical result of static pile loading test by 3-D FDM simulation is compared with those obtained from the field test.
    Numerical results have been obtained for a series of numerical experiments to illustrate the influence of various raft thickness t, pile spacing s and loading intensity q on the performance of piled raft foundation in Taipei Metropolitan. It is considered that the pile is installed in a group, resting on bearing strata (sandstone bedrock) and uniformly loaded through a rigid (concrete) raft constructed at a typical excavation depth. The values of numerical variables considered in numerical experiments are t=1, 2 and 3m, s=2d, 3d and 4.5d (d=pile diameter=2m) and q=1,000, 750 and 400 kN/m2. The numerical evaluations are made in terms of load-settlement curve, load transfer curve, T-Z curve, settlement influence factor and bending moment for various cases.

    Abstract i 摘要 ii 誌謝 iii Table of Contents iv List of Tables vii List of Figures viii List of Symbols and Abbreviations xii CHAPTER I Introduction 1 1.1 General 1 1.2 Objectives of Study 2 CHAPTER II Literature Review 4 2.1 General 4 2.2 Studies in Taipei Subsoil 4 2.2.1 GeologicalCondition 4 2.2.2 Stratigraphy and Zoning of the Sungshan Formation 5 2.2.3 GroundwaterCondition 6 2.3 Previous Researches on Piled Raft Foundations 6 2.4 Review of Analysis Methods 10 2.4.1 Simplified Calculation Methods 10 2.4.1.1 Poulos and Davis (1980) Method 10 2.4.1.2 Randolf (1983) Method 10 2.4.2 Approximate Computer-Based Methods 10 2.4.2.1 Strip on Spring Approach 11 2.4.2.2 Plate on Spring Approach 11 2.4.3 Rigorous Numerical Methods 11 2.4.3.1 Boundary Element Methods 11 2.4.3.2 Combined Boundary Element and Finite Element Method 12 2.4.3.3 Simplified Finite Element Methods 12 2.4.4 Three Dimensional Numerical Method 12 2.4.4.1 Analysis of the Raft Component 13 2.4.4.2 Approximation for Analysis of Piled Raft 14 CHAPTER III Theoretical Considerations 16 3.1 General 16 3.2 3-D Fast Lagrangian Analysis Continua (FLAC3D) Program 16 3.3 Numerical Modeling of Piled Raft Foundation 16 3.3.1 Descretization 16 3.3.2 Model Formulation for Soil Element 17 3.3.3 Model Formulation for Pile Element 17 3.3.3.1 Behavior of Shear Coupling Springs 18 3.3.3.2 Behavior of Normal Coupling Springs 18 3.3.4 Model Formulation of Shell Element 20 3.3.5 Considerations for Grid Generation 20 3.4 Constitutive Models 21 3.4.1 Linear Elastic Model 21 3.4.2 Plasticity Models 21 3.5 Determination of Model Parameters 22 CHAPTER IV Methodology 23 4.1 General 23 4.2 Data Collection 23 4.2.1 Soil Properties 23 4.2.2 Static Pile Load Tests 23 4.2.3 Pile Foundation of TIFC Project 24 4.3 3-D Numerical Simulation of Static Pile Loading Tes 24 4.3.1 Compression Loading Test 25 4.3.2 Extension Loading Test 25 4.3.3 Back Analysis of Parameters 26 4.4 3-D Numerical Modeling of Piled Raft Foundation 27 4.4.1 Un-piled Raft Foundation 27 4.4.2 Piled Raft Foundation 27 CHAPTER V Results and Discussions 29 5.1 General 29 5.2 Static Pile Loading Test 29 5.2.1 Load Settlement Curve 29 5.2.2 Load Transfer Curve 30 5.2.3 T-Z Curve 31 5.3 Behavior of Un-Piled Raft Foundation 31 5.3.1 Settlement 32 5.3.2 Bending Moment 33 5.4 Behavior of Piled Raft Foundation 34 5.4.1 Settlement 34 5.4.2 Bending Moment 35 5.4.3 Mechanism of Load Transfer 36 5.4.4 Effect of Pile Configuration 36 CHAPTER VI Conclusions and Recommendations 38 6.1 Static Pile Loading Test 38 6.2 Settlement of Un-piled Raft 38 6.3 Bending Moment of Un-piled Raft 39 6.4 Settlement of Piled Raft 39 6.5 Bending Moment of Piled Raft 40 6.6 Bending Moment of Pile Group 40 6.7 Load Transfer of Piled Raft Foundation 40 6.8 Effect of Pile Configuration 41 6.9 Recommendations 41 References 43 Tables 49 Figures 60 Appendix A Figures of pile loading test and analysis of piled raft 133 Appendix B Program Codes 176

    Reference
    1.Banerjee, P. K., 1978. Analysis of axially and laterally loaded piles in groups.Development in soil mechanics. Applied science publishers, London, 317-346.
    2.Bransby M. F. and Springsman, M., 1996. 3-D finite element modeling of pile groups adjacent to surcharge loads. Computer and geotechnics, 19/4:301-324.
    3.Brown, P. T. and Weisner, T. J., 1975. The behavior of uniformly loaded piled strip footings. Soils and foundations, 15/4:13-21.
    4.Brown, P. T., Poulos, H. G. and Weisner, T. J., 1975. Piled raft foundation design. Proc.symposium on raft foundations. Perth, CSIRO, 13-21.
    5.Brown, D. A., Morisson C. and Reese, L. C., 1988. Lateral behavior of pile group in sand. Journal of geotechnical engineering, ASCE, 114/11:1261-1276.
    6.Butterfield, R. and Banerjee, P. K., 1971. The elastic analysis of compressible piles and pile groups. Geotechnique, 21/1:43-60.
    7.Cheung, Y. K., Tham, L. G. and Guo D. J., 1988. Analysis of pile group by infinite element layer method. Geotechnique, 38/3:415-431.
    8.Cheung, Y. K.,1991. Elastoplastic analysis of soil-pile interaction. Computer and geotechnics, 12:115-132.
    9.Chin, J. T., 1988. Analysis of piles and pile groups embedded in a layered half space.MEng thesis, National University of Singapore.
    10.Chow, Y. K. and Teha, C. I., 1991. Pile-cap pile-group-soil interaction in non-homogenous soil. Journal of geotechnical engineering, ASCE. 117/11:1655-
    1688
    11.Chow, Y. K., 1986. Analysis of vertically loaded pile groups. International journal of analytical methods in geomechanics, 10/1:59-72.
    12.Chow, Y. K.,1989. Axially loaded piles and pile groups embedded in a cross-anisotropic soil. Geotechnique, 39/2:203-211.
    13.Chun, H. H., 1992. Performance of driven and bored piles in expressway projects. AIT,MEng thesis no. GT-91-3.
    14.Clancy, P. and Randolf, M. F., 1993. An approximate analysis procedure for piled raft foundations. International journal for numerical nethods in geomechanics, 17:849-869.
    15.Davis, E. H. and Poulos, H. G., 1972. The analysis of piled raft systems. Australian geomechanics journal, G2/11:21-27.
    16.Desai, C. S., 1974. Numerical design and analysis for piles in sands. Journal of geotechnical engineering, ASCE, 100/6:613-635.
    17.Donovan, K., Parisuau, W. G. and Cepak, M., 1984. Finite element approach to cable bolting in steeply dippping VCR slopes. Geomechanics application in
    underground hardrock mining, 65-90.
    18.El Sharnouby, B. and Novak, M., 1990. Stiffness constants and interaction factors for vertical response of pile groups. Canadian geotechnical journal, 27:813-822.
    19.El Sharnouby, B. and Novak, M., 1990. Stiffness constants and interaction factors for vertical response of pile groups. Research report GEOT-8-90, ISSN 0847-0626.University of Ontario, London.
    20.Fernando, G. S. K., 1992. Load Settlement analysis of bored piles in Bangkok subsoil using finite element method. AIT, MEng thesis no. GT-91-2.
    21.Fleming, W. H. K., 1992. A new method for single pile settlement prediction and analysis. Geotechnique, 42/3:411-425.
    22.Fleming, W. H. K., Welman, A. S., Randolf, M. F. and Elson, W. K., 1985. Pile engineering. John Wiley and sons. New York.
    23.Franke, E., Lutz, B. and El-Mossailamy, Y., 1994. Measurements and numerical
    modeling of high-rise building foundations on Frankfurt clay. Vertical and
    horizontal deformation of foundations and embankments, ASCE. Geot. Spec.
    Publication no. 402:1325-1336.
    24.Guo, D. J., Tham, C. G. and Cheung, Y. K., 1987. Infinite layer for the analysis of a single pile. Computer and geotechnics, 3:229-249.
    25.Hain, S. J. and Lee, I. K., 1978. The analysis of flexible raft-pile systems. Geotechnique, 28/1:65-83.
    26.H.B.Poorooshasb and Ali Noorzad, 1995. Analysis of piled-raft foundation.Numerical Models in Geomechanics, 6:565-570
    27.Hewitt, P. B. and Gue, S. S., 1994. Piled raft foundation in a weathered sedimentary formation, Kualalumpur, Malaysia. Proc. Geotropica, 1-11.
    28.Hirayama, 1990. Load settlement analysis for bored piles using hyperbolic transfer functions. Soils and foundation, 30/1:55-64.
    29.Hongladaromp, T., Chen, N. J. and Lee, S. L., 1973. Load distributions in rectangular footings in piles. Geotechnical. engineering, ASCE, 4/2:77-90.
    30.Honjo Y., Limanhadi, B. and Wen-tsung, L., 1993. Prediction of single pile settlement based on inverse analysis. Soil and foundations, 33/2:126-144
    31.Kiew, W. Y., 1991. Numerical simulation of settlements associated with driven piles in Bangkok clay. AIT, MEng thesis no. GT-90-13.
    32.Kuwabara, F., 1989. Elastic analysis for piled raft foundations in a homogenous soil.Soils and foundations, 29/1:82-92.
    33.Kuwabara, F., 1991. Settlement behavior of non-linear soil around single piles subjected to vertical loads. Soil and foundations, 33/4:26-35.
    34.L.D.Ta and J.C.Small, 1995. An approximation for analysis of raft and piled raft foundations. Computer and Geotechnics, 20/2:105-123
    35.Lee S. L. and Small, J. C., 1991. Finite layer analysis of axially loaded piles. Journal of geotechnical engineering, ASCE, 117/11:1706-1722.
    36.Lee, S. L., 1993. Pile group settlement analysis by hybrid layer approach. Journal of geotechnical engineering, ASCE, 119/6:984-997.
    37.Lee, S. L., Kog, Y. C. and Karunaratne, G. P., 1987. Axially loaded piles in layered soils. Journal of geotechnical engineering, ASCE, 113/4:366-381.
    38.Limanhadi, B., 1992. Prediction of pile settlement with quantified uncertainty for second stage Bangkok expressway. AIT, MEng thesis no. GT-91-9.
    39.Liu W. and Novak, M., 1991. Soil-pile-cap static interaction analysis by finite and infinite elements. Canadian geotechnical journal, 28:771-783.
    40.Marti, J. and Cundal, P. A., 1982. Mixed discretization procedure for accurate solution of plasticity problems. Int. Jour. Num. Meth. And Anal. Meth. In Geomechanics,6:129-139.
    41.Meyerhof, G. G., 1976. Bearing capacity and settlement of pile foundation. Journal of geotechnical engineering, ASCE, 102/3:197-228.
    42.Meyerhof, G. G., 1995. Behavior of pile foundation under special loading conditions.1994 R. M. Hardy keynote address. Canadian geotechnical journal, 32:204-222.
    43.Naylor, D. T., and Hooper, J. A., 1974. An effective stress finite element analysis to predict the short and long term behavior of a piled raft foundation on London clay.
    44.Proc. Conf. on settlement of structures, Cambridge, 394-402.
    45.Ng, K. C., 1983. The construction problems and performance of large bored piles in second sand layer. AIT, MEng thesis no. GT-85-32.
    46.Novak M. and El Sharnouby, B.,1983. Stiffness constants of single piles. Journal of geotechnical engineering, ASCE, 109:961-974.
    47.Oonchittikul, 1990. Performance of bored piles in Bangkok subsoil. AIT MEng thesis no.GT-89-10.
    48.Otter, J. R. H., Cassell, A. C. and Hobbs, R. E., 1966. Dynamic relaxation. Paper no.6986, Proc. Inst. Civil Eng., 35:633-656.
    49.Ottoviani, M., 1975. Three dimensional finite element analysis of vertically loaded pile groups. Geotechnique, 25/2:159-174.
    50.Peck R. B., Hansen, W. E. and Thornburn, T. H., 1974. Foundation engneering. John Wiley and sons, New York.
    51.Pimpasugdi, S., 1989. Performance evaluation of bored, driven and auger pressed piles in Bangkok subsoil. AIT, MEng thesis no. GT-88-12.
    52.Polo, J. M. and Clemente, J. L. M., 1988. Pile-group settlement using independent shaft and point loads. Journal of geotechnical engineering, ASCE114/4:469-487.
    53.Pong, A.W., 1993. Performance of grouted and non-grouted bored piles in Bangkok subsoil. AIT MEng thesis no. GT-92-8.
    54.Poorooshasb, H. B., Miura, N. and Noorzad, A., 1995. Analysis of piled raft foundation. Proc. of the Numerical Models in Geomechanics, NUMOG V, 565-570.
    55.Poulos, H. G. and Davis, E. H., 1980. Pile foundation analysis and design. John Wiley and sons, New York.
    56.Poulos, H. G., 1968. Analysis of settlement of pile groups. Geotechnique, 18/4:449-471.
    57.Poulos, H. G., 1991. Analysis of piled strip foundations. Comp methods and advances in geomechanics. Balkema, Rotterdam, I:1983-191/
    58.Poulos, H. G., 1993. Settlement prediction for bored pile groups. Proc. 2nd Int. Geot. Sem.on Deep foundation, bored and auger piles, Ghent, A.A. Balkema, Rotterdam, 103-117.
    59.Poulos, H. G., 1993. Piled Rafts in swelling and consolidating soils. Jnl. Geo. Eng., ASCE, 119/2:374-380.
    60.Poulos, H. G., 1994. An approximate analysis of pile-raft interaction. Int. Jour. for Num. Methods in Geomechanics, 18:73-92.
    61.Poulos, H. G., 1997. A Comparison of some methods for the design of piles through embankments. Proc. of the 30th year symposium of the Southeast Asian
    Geotechnical Society, 5:1-6.
    62.Poulos, H. G., 1997. Alternative design strategies for piled raft foundations. Proc. of the 30th year symposium of the Southeast Asian Geotechnical Society, 5:1-6.
    63.Poulos, H. G., Small, J. C., Ta, L. D., Sinha, J and Chen, L.,1997. Comparison of some methods for analysis of piled rafts. Proc. of the 30th year symposium of the Southeast Asian Geotechnical Society, 5:1-6.
    64.Prapaitrakul, N., 1975. Settlement prediction of friction piles on soft Bangkok clay. AIT, MEng thesis no. 771.
    65.Pressley J. S. and Poulos, H. G., 1986. Finite element analysis of mechanisms of pile group behavior. Int. Jour. Num. Meth. in Geomechanics, 10/2:213-221.
    66.Randolf, M. F., 1983. Design of piled raft foundations. Cambridge Univ. Eng. Dept. Res.Report Soils TR143
    67.Randolf, M. F., Dolwin, J. and Beck, R., 1994. Design of driven piles in sand.Geotechnique, 44/3:427-448.
    68.Randolf, M. F. and Wroth, C. P., 1978. Analysis of deformation of vertically loaded piles. Journal of geotechnical engineering, ASCE104/12:1465-1488.
    69.Rianrukwong, S., 1993. Prediction of pile settlement in Bangkok area by inverse analysis method. AIT, MEng thesis no. GT-92-12.
    70.Roongrujirat, W., 1983. Settlement prediction and performance of high rise buildings in Bangkok. AIT MEng thesis no. GT-82-27.
    71.Sayed, M. S. and Bakeer, R. M., 1992. Efficiency formula for pile groups. Journal of geotechnical engineering, ASCE, 118/2:278-299.
    72.Simonini, P., 1996. Analysis of behavior of sand surrounding pile tips. Journal of geotechnical engineering, ASCE, 122/11:897-905.
    73.Sinha, J., 1996. Analysis of piled raft system with boundary element procedure. PhD thesis. University of Sydney, Australia.
    74.Small, J. C. and Booker, J. R., 1984. Finite layer analysis of layered elastic materials using a flexibility approach.
    75.Soontornsiri, A., 1995. Behavior and performance of grouted bored piles in Bangkok subsoil. AIT, MEng thesis no. GT-94-11.
    76.Southscott, P. H. and Small, J. C., 1996. Finite layer analysis of vertically loaded piles and pile groups. Computer and geotechnics, ASCE, 18/1: 47-63.
    77.Ta, L. D. and Small J. C., 1996. Analysis of piled raft foundation systems in layered soils. Int. Jour. for Num. methods in geomechanics, 20:57-92.
    78.Ta, L. D. and Small J. C., 1997. An approximate analysis of raft and piled raft foundations. Computer and geotechnics, 20/2:105-123.
    79.Ta, L. D. and Small J. C.,1995. Finite layer analysis of pile groups in layered soils. Proc. of the Numerical Models in geomechanics, NUMOG V, 577-582.
    80.Wakai, A., Ugai, K. and Gose, S., 1995. The 3-D FE analysis of the model pile group embedded in sand. Proc. of the numerical models in geomechanics, NUMOG V,613-618.
    81.Wang, A., 1995. Three-dimensional nonlinear analysis of vertically loaded piled rafts. PhD thesis. University of Manchester, UK.
    82.Wangchingchai, A., 1994. Pile capacity in Bangkok subsoil. Ait, MEng thesis no.GT-93-12.
    83.Wilkins, M. L., 1964. Fundamental methods in Hydrodynamics. Methods in
    computational physics, 3:211-263.

    下載圖示 校內:立即公開
    校外:2002-08-08公開
    QR CODE