| 研究生: |
陳梓銘 Cheng, Zhi-Ming |
|---|---|
| 論文名稱: |
台北都會區樁-筏基礎三維數值分析 Three-Dimensional Numerical Analysis of Piled Raft Fundations in Taipei Metropolitan |
| 指導教授: |
常正之
Charng, J.J. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 235 |
| 中文關鍵詞: | 樁筏基礎 |
| 外文關鍵詞: | piled raft, un-piled |
| 相關次數: | 點閱:50 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
樁筏系統適於承載都會區軟弱土層上,大型建築物所傳遞之巨大荷重。本文採用台北國際金融大樓試樁試驗結果及樁筏配置,進行樁筏系統承載機制之研究。研究中,採用三維有限差分程式進行樁載重試驗及樁筏實際承載案例之數值模擬。數值分析中,所需之輸入參數先由樁載重試驗模擬結果與現地量測值比較後,求得基樁~土壤互制作用所需之界面及土層參數,並使用於爾後之群樁及樁筏系統之承載模擬。
對單樁試樁模擬而言,載重~沉陷曲線、載重傳遞及各土層T-Z曲線,皆可得到良好模擬結果。以往之研究,忽略筏的承載貢獻並視載重全為群樁所承擔,本文探討筏對樁筏基礎分擔載重比例,做一系列的說明。在研究中,採用不同參數(如筏厚度、樁距、筏基上部載重等),探討其對筏基力學行為影響。在不同的條件下,可得到參數對於筏基的沉陷、沉陷影響因數、筏彎矩、群樁彎矩分佈和樁筏間載重分擔機制有顯著的影響。本研究得知沉陷與彎矩最大值發生於筏中心,且由筏外緣向中心漸增。同時,可比較樁筏和無樁筏基礎承載力學行為差異及群樁對於樁筏基礎在沉陷方面的改善。在樁筏載重分擔比例方面,在樁距固定下,隨著上部載重增加,筏分擔載重比例有明顯的增加。
Piled raft systems are often suitable as foundations for large buildings in soft soil.
This study investigates the raft-pile-soil interaction for vertically loaded raft on layered Taipei subsoil. Conventional design of piled-raft foundation ignores bearing effect of raft and considers entire load to be carried by the piles. In this study, the load capacity of raft as well as pile group in piled raft system considered by three-dimensional finite difference analysis. The required input parameters for the analysis were back-calculated from the static pile loading testing. The numerical result of static pile loading test by 3-D FDM simulation is compared with those obtained from the field test.
Numerical results have been obtained for a series of numerical experiments to illustrate the influence of various raft thickness t, pile spacing s and loading intensity q on the performance of piled raft foundation in Taipei Metropolitan. It is considered that the pile is installed in a group, resting on bearing strata (sandstone bedrock) and uniformly loaded through a rigid (concrete) raft constructed at a typical excavation depth. The values of numerical variables considered in numerical experiments are t=1, 2 and 3m, s=2d, 3d and 4.5d (d=pile diameter=2m) and q=1,000, 750 and 400 kN/m2. The numerical evaluations are made in terms of load-settlement curve, load transfer curve, T-Z curve, settlement influence factor and bending moment for various cases.
Reference
1.Banerjee, P. K., 1978. Analysis of axially and laterally loaded piles in groups.Development in soil mechanics. Applied science publishers, London, 317-346.
2.Bransby M. F. and Springsman, M., 1996. 3-D finite element modeling of pile groups adjacent to surcharge loads. Computer and geotechnics, 19/4:301-324.
3.Brown, P. T. and Weisner, T. J., 1975. The behavior of uniformly loaded piled strip footings. Soils and foundations, 15/4:13-21.
4.Brown, P. T., Poulos, H. G. and Weisner, T. J., 1975. Piled raft foundation design. Proc.symposium on raft foundations. Perth, CSIRO, 13-21.
5.Brown, D. A., Morisson C. and Reese, L. C., 1988. Lateral behavior of pile group in sand. Journal of geotechnical engineering, ASCE, 114/11:1261-1276.
6.Butterfield, R. and Banerjee, P. K., 1971. The elastic analysis of compressible piles and pile groups. Geotechnique, 21/1:43-60.
7.Cheung, Y. K., Tham, L. G. and Guo D. J., 1988. Analysis of pile group by infinite element layer method. Geotechnique, 38/3:415-431.
8.Cheung, Y. K.,1991. Elastoplastic analysis of soil-pile interaction. Computer and geotechnics, 12:115-132.
9.Chin, J. T., 1988. Analysis of piles and pile groups embedded in a layered half space.MEng thesis, National University of Singapore.
10.Chow, Y. K. and Teha, C. I., 1991. Pile-cap pile-group-soil interaction in non-homogenous soil. Journal of geotechnical engineering, ASCE. 117/11:1655-
1688
11.Chow, Y. K., 1986. Analysis of vertically loaded pile groups. International journal of analytical methods in geomechanics, 10/1:59-72.
12.Chow, Y. K.,1989. Axially loaded piles and pile groups embedded in a cross-anisotropic soil. Geotechnique, 39/2:203-211.
13.Chun, H. H., 1992. Performance of driven and bored piles in expressway projects. AIT,MEng thesis no. GT-91-3.
14.Clancy, P. and Randolf, M. F., 1993. An approximate analysis procedure for piled raft foundations. International journal for numerical nethods in geomechanics, 17:849-869.
15.Davis, E. H. and Poulos, H. G., 1972. The analysis of piled raft systems. Australian geomechanics journal, G2/11:21-27.
16.Desai, C. S., 1974. Numerical design and analysis for piles in sands. Journal of geotechnical engineering, ASCE, 100/6:613-635.
17.Donovan, K., Parisuau, W. G. and Cepak, M., 1984. Finite element approach to cable bolting in steeply dippping VCR slopes. Geomechanics application in
underground hardrock mining, 65-90.
18.El Sharnouby, B. and Novak, M., 1990. Stiffness constants and interaction factors for vertical response of pile groups. Canadian geotechnical journal, 27:813-822.
19.El Sharnouby, B. and Novak, M., 1990. Stiffness constants and interaction factors for vertical response of pile groups. Research report GEOT-8-90, ISSN 0847-0626.University of Ontario, London.
20.Fernando, G. S. K., 1992. Load Settlement analysis of bored piles in Bangkok subsoil using finite element method. AIT, MEng thesis no. GT-91-2.
21.Fleming, W. H. K., 1992. A new method for single pile settlement prediction and analysis. Geotechnique, 42/3:411-425.
22.Fleming, W. H. K., Welman, A. S., Randolf, M. F. and Elson, W. K., 1985. Pile engineering. John Wiley and sons. New York.
23.Franke, E., Lutz, B. and El-Mossailamy, Y., 1994. Measurements and numerical
modeling of high-rise building foundations on Frankfurt clay. Vertical and
horizontal deformation of foundations and embankments, ASCE. Geot. Spec.
Publication no. 402:1325-1336.
24.Guo, D. J., Tham, C. G. and Cheung, Y. K., 1987. Infinite layer for the analysis of a single pile. Computer and geotechnics, 3:229-249.
25.Hain, S. J. and Lee, I. K., 1978. The analysis of flexible raft-pile systems. Geotechnique, 28/1:65-83.
26.H.B.Poorooshasb and Ali Noorzad, 1995. Analysis of piled-raft foundation.Numerical Models in Geomechanics, 6:565-570
27.Hewitt, P. B. and Gue, S. S., 1994. Piled raft foundation in a weathered sedimentary formation, Kualalumpur, Malaysia. Proc. Geotropica, 1-11.
28.Hirayama, 1990. Load settlement analysis for bored piles using hyperbolic transfer functions. Soils and foundation, 30/1:55-64.
29.Hongladaromp, T., Chen, N. J. and Lee, S. L., 1973. Load distributions in rectangular footings in piles. Geotechnical. engineering, ASCE, 4/2:77-90.
30.Honjo Y., Limanhadi, B. and Wen-tsung, L., 1993. Prediction of single pile settlement based on inverse analysis. Soil and foundations, 33/2:126-144
31.Kiew, W. Y., 1991. Numerical simulation of settlements associated with driven piles in Bangkok clay. AIT, MEng thesis no. GT-90-13.
32.Kuwabara, F., 1989. Elastic analysis for piled raft foundations in a homogenous soil.Soils and foundations, 29/1:82-92.
33.Kuwabara, F., 1991. Settlement behavior of non-linear soil around single piles subjected to vertical loads. Soil and foundations, 33/4:26-35.
34.L.D.Ta and J.C.Small, 1995. An approximation for analysis of raft and piled raft foundations. Computer and Geotechnics, 20/2:105-123
35.Lee S. L. and Small, J. C., 1991. Finite layer analysis of axially loaded piles. Journal of geotechnical engineering, ASCE, 117/11:1706-1722.
36.Lee, S. L., 1993. Pile group settlement analysis by hybrid layer approach. Journal of geotechnical engineering, ASCE, 119/6:984-997.
37.Lee, S. L., Kog, Y. C. and Karunaratne, G. P., 1987. Axially loaded piles in layered soils. Journal of geotechnical engineering, ASCE, 113/4:366-381.
38.Limanhadi, B., 1992. Prediction of pile settlement with quantified uncertainty for second stage Bangkok expressway. AIT, MEng thesis no. GT-91-9.
39.Liu W. and Novak, M., 1991. Soil-pile-cap static interaction analysis by finite and infinite elements. Canadian geotechnical journal, 28:771-783.
40.Marti, J. and Cundal, P. A., 1982. Mixed discretization procedure for accurate solution of plasticity problems. Int. Jour. Num. Meth. And Anal. Meth. In Geomechanics,6:129-139.
41.Meyerhof, G. G., 1976. Bearing capacity and settlement of pile foundation. Journal of geotechnical engineering, ASCE, 102/3:197-228.
42.Meyerhof, G. G., 1995. Behavior of pile foundation under special loading conditions.1994 R. M. Hardy keynote address. Canadian geotechnical journal, 32:204-222.
43.Naylor, D. T., and Hooper, J. A., 1974. An effective stress finite element analysis to predict the short and long term behavior of a piled raft foundation on London clay.
44.Proc. Conf. on settlement of structures, Cambridge, 394-402.
45.Ng, K. C., 1983. The construction problems and performance of large bored piles in second sand layer. AIT, MEng thesis no. GT-85-32.
46.Novak M. and El Sharnouby, B.,1983. Stiffness constants of single piles. Journal of geotechnical engineering, ASCE, 109:961-974.
47.Oonchittikul, 1990. Performance of bored piles in Bangkok subsoil. AIT MEng thesis no.GT-89-10.
48.Otter, J. R. H., Cassell, A. C. and Hobbs, R. E., 1966. Dynamic relaxation. Paper no.6986, Proc. Inst. Civil Eng., 35:633-656.
49.Ottoviani, M., 1975. Three dimensional finite element analysis of vertically loaded pile groups. Geotechnique, 25/2:159-174.
50.Peck R. B., Hansen, W. E. and Thornburn, T. H., 1974. Foundation engneering. John Wiley and sons, New York.
51.Pimpasugdi, S., 1989. Performance evaluation of bored, driven and auger pressed piles in Bangkok subsoil. AIT, MEng thesis no. GT-88-12.
52.Polo, J. M. and Clemente, J. L. M., 1988. Pile-group settlement using independent shaft and point loads. Journal of geotechnical engineering, ASCE114/4:469-487.
53.Pong, A.W., 1993. Performance of grouted and non-grouted bored piles in Bangkok subsoil. AIT MEng thesis no. GT-92-8.
54.Poorooshasb, H. B., Miura, N. and Noorzad, A., 1995. Analysis of piled raft foundation. Proc. of the Numerical Models in Geomechanics, NUMOG V, 565-570.
55.Poulos, H. G. and Davis, E. H., 1980. Pile foundation analysis and design. John Wiley and sons, New York.
56.Poulos, H. G., 1968. Analysis of settlement of pile groups. Geotechnique, 18/4:449-471.
57.Poulos, H. G., 1991. Analysis of piled strip foundations. Comp methods and advances in geomechanics. Balkema, Rotterdam, I:1983-191/
58.Poulos, H. G., 1993. Settlement prediction for bored pile groups. Proc. 2nd Int. Geot. Sem.on Deep foundation, bored and auger piles, Ghent, A.A. Balkema, Rotterdam, 103-117.
59.Poulos, H. G., 1993. Piled Rafts in swelling and consolidating soils. Jnl. Geo. Eng., ASCE, 119/2:374-380.
60.Poulos, H. G., 1994. An approximate analysis of pile-raft interaction. Int. Jour. for Num. Methods in Geomechanics, 18:73-92.
61.Poulos, H. G., 1997. A Comparison of some methods for the design of piles through embankments. Proc. of the 30th year symposium of the Southeast Asian
Geotechnical Society, 5:1-6.
62.Poulos, H. G., 1997. Alternative design strategies for piled raft foundations. Proc. of the 30th year symposium of the Southeast Asian Geotechnical Society, 5:1-6.
63.Poulos, H. G., Small, J. C., Ta, L. D., Sinha, J and Chen, L.,1997. Comparison of some methods for analysis of piled rafts. Proc. of the 30th year symposium of the Southeast Asian Geotechnical Society, 5:1-6.
64.Prapaitrakul, N., 1975. Settlement prediction of friction piles on soft Bangkok clay. AIT, MEng thesis no. 771.
65.Pressley J. S. and Poulos, H. G., 1986. Finite element analysis of mechanisms of pile group behavior. Int. Jour. Num. Meth. in Geomechanics, 10/2:213-221.
66.Randolf, M. F., 1983. Design of piled raft foundations. Cambridge Univ. Eng. Dept. Res.Report Soils TR143
67.Randolf, M. F., Dolwin, J. and Beck, R., 1994. Design of driven piles in sand.Geotechnique, 44/3:427-448.
68.Randolf, M. F. and Wroth, C. P., 1978. Analysis of deformation of vertically loaded piles. Journal of geotechnical engineering, ASCE104/12:1465-1488.
69.Rianrukwong, S., 1993. Prediction of pile settlement in Bangkok area by inverse analysis method. AIT, MEng thesis no. GT-92-12.
70.Roongrujirat, W., 1983. Settlement prediction and performance of high rise buildings in Bangkok. AIT MEng thesis no. GT-82-27.
71.Sayed, M. S. and Bakeer, R. M., 1992. Efficiency formula for pile groups. Journal of geotechnical engineering, ASCE, 118/2:278-299.
72.Simonini, P., 1996. Analysis of behavior of sand surrounding pile tips. Journal of geotechnical engineering, ASCE, 122/11:897-905.
73.Sinha, J., 1996. Analysis of piled raft system with boundary element procedure. PhD thesis. University of Sydney, Australia.
74.Small, J. C. and Booker, J. R., 1984. Finite layer analysis of layered elastic materials using a flexibility approach.
75.Soontornsiri, A., 1995. Behavior and performance of grouted bored piles in Bangkok subsoil. AIT, MEng thesis no. GT-94-11.
76.Southscott, P. H. and Small, J. C., 1996. Finite layer analysis of vertically loaded piles and pile groups. Computer and geotechnics, ASCE, 18/1: 47-63.
77.Ta, L. D. and Small J. C., 1996. Analysis of piled raft foundation systems in layered soils. Int. Jour. for Num. methods in geomechanics, 20:57-92.
78.Ta, L. D. and Small J. C., 1997. An approximate analysis of raft and piled raft foundations. Computer and geotechnics, 20/2:105-123.
79.Ta, L. D. and Small J. C.,1995. Finite layer analysis of pile groups in layered soils. Proc. of the Numerical Models in geomechanics, NUMOG V, 577-582.
80.Wakai, A., Ugai, K. and Gose, S., 1995. The 3-D FE analysis of the model pile group embedded in sand. Proc. of the numerical models in geomechanics, NUMOG V,613-618.
81.Wang, A., 1995. Three-dimensional nonlinear analysis of vertically loaded piled rafts. PhD thesis. University of Manchester, UK.
82.Wangchingchai, A., 1994. Pile capacity in Bangkok subsoil. Ait, MEng thesis no.GT-93-12.
83.Wilkins, M. L., 1964. Fundamental methods in Hydrodynamics. Methods in
computational physics, 3:211-263.