簡易檢索 / 詳目顯示

研究生: 冷牧謙
Len, Mu-Chien
論文名稱: 低溫燒結之積層式氧化鋅變阻器之電性及突波吸收能力之研究
Electrical properties and Energy absorption capability of low-temperature sintered multilayer ZnO varistors.
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 99
中文關鍵詞: 低溫燒結變阻器高非線性指數突波電流預先煆燒
外文關鍵詞: Low-temperature sintering, varistor, High nonlinear coefficient, surge current, calcination
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過傳統之固態反應法,使Bi2O3-Sb2O3-Co3O4-Mn3O4-Nb2O5氧化鋅變阻器於860℃-880℃的低溫下燒結,其非線性指數為50< α <80、突波電流吸收能力最高為120A。首先於ZnO變阻器中摻雜不同含量之SiO2及B2O3,了解其變阻性質、微觀結構之變化。研究顯示隨SiO2之添加,α值從未添加SiO2的51提升至添加1.0wt% SiO2的66;崩潰電壓從834V/mm提升至1260V/mm。而隨SiO2的過量添加,α值從添加1wt% SiO2的66逐漸下降至添加2.0wt% SiO2的52;崩潰電壓則是持續上升。而透過SiO2-B2O3的添加,藉二摻雜劑之液相輔助燒結效果,使有效晶界數目提升,同時促進了晶粒成長,使坯體緻密性提升,α值從未添加B2O3的66提升至添加2.0wt%的83;崩潰電壓從1260V/mm下降至1120V/mm。最後決定SiO2及B2O3最佳添加量依序為1.0wt%及1.5wt%。接著為了使ZnO變阻器之緻密化溫度下降,研究了Bi2O3、Sb2O3混合粉末預先進行煆燒後,對緻密化溫度之影響。研究顯示當Bi2O3、Sb2O3之混合粉末預先在550℃下進行煆燒處理,其樣品在燒結過程中,坯體得以形成較少量之Pyrochlore二次相而具有較大量之液相成分,故在燒結完成後,坯體緻密化程度較高,變阻性質也因此較優異。最後,為了使ZnO變阻器之突波電流吸收能力提升,研究了ZnO、Co3O4、Mn3O4混合粉末預先進行不同熱處理後,樣品之突波電流吸收能力變化,研究顯示當ZnO、Co3O4、Mn3O4混合粉末預先以600℃煆燒6小時,製作之變阻器樣品,其可承受最大突波電流(突波波形為8/20μs),可從ZnO、Co3O4、Mn3O4未經處理之普通樣品的80A提升至120A(電極重疊面積:4.84 mm2)。主要原因為ZnO、Co3O4、Mn3O4粉末經600℃煆燒6小時後,ZnO半導化,具有最多[Co_Zn^·],也因此其晶粒電阻從未經煆燒的1680Ω降至350Ω,除此之外,當Co3+取代Zn2+,ZnO亦伴隨產生V_Zn^'缺陷,故當ZnO、Co3O4、Mn3O4粉末經600℃煆燒6小時後,ZnO亦具有最多[V_Zn^'],促進了ZnO晶粒在燒結初期之成長,樣品之晶粒尺寸最大,導致樣品之崩潰電壓及總電阻相對較小。

    In the study, low temperature (860℃ to 880℃) sintered ZnO-Bi2O3-Sb2O3-Co3O4-Mn3O4-Nb2O5 (ZBSCMN)-based varistors with coefficients(α) ranging from 50 to 80 and superior energy absorption capability of 120A (Electrode area=4.84mm2) were successfully prepared. For first part of the study, the effects of SiO2 and B2O3 addition on the crystalline phase, microstructure, and electrical properties of the ZBSCMN based varistors were investigated. The varistors sintered at 860℃ for 2h, with VB=1120 V/mm, α=83, and IL=0.09μA can be obtained by adding with 1.0wt% SiO2 and 1.5wt% B2O3. In the second part of the study, the effect of the pre-calcination of Bi2O3 and Sb2O3 mixture on the densification, microstructure and electric properties of varistors were investigated. XRD and DIL results showed that pyrochlore phase (Zn2Bi3Sb3O14) which inhibited the densification and grain growth was decreased by 10% by pre-calcination of Bi2O3 and Sb2O3 mixture at 550℃ for 6 h, leading to more liquid phase and hence increasing the sintered density at temperatures below 900oC. In the last part, the effect of the pre-calcination temperature of the mixture of ZnO, Co3O4, and Mn3O4 (ZCM) on the electric properties and energy absorption capabilities of ZBSCMN-based varistors were investigated. The result shows the optimum energy absorption capability of ZBSCMN-based varistors can be obtained by the pre-calcination of ZCM mixture at 600℃ for 6h due to the lowest grain resistivity.

    摘要 I 致謝 VII 目錄 VIII 圖目錄 XII 表目錄 XV 第一章、緒論 1 1.1 前言 1 1.2 研究目的 2 第二章、文獻回顧與理論基礎 6 2.1 變阻器 6 2.1.1 變阻器之開發 6 2.1.2 Bi2O3系統-氧化鋅變阻器 6 2.2 變阻性質生成機構 9 2.2.1 變阻器晶界能障(Double Schottky barrier)的起源 9 2.2.2 非歐姆特性 12 2.3 變阻係數之計算 13 2.4 晶界物理參數之計算(Mott-Schottky) 15 2.5 交流阻抗分析(Cole-Cole plot) 17 2.6 過渡金屬離子 22 2.7 能量吸收能力 24 2.8 液相的形成 27 2.9 二次相 28 2.10 施體缺陷之介電譜研究 29 第三章、實驗步驟與分析方法 31 3.1 實驗原料 31 3.2 實驗架構 32 3.2.1 研究的第一部分及第二部分 32 3.2.1.1 粉末的煆燒及製備 33 3.2.1.2 坯體的成形及燒結 34 3.2.2 研究的第三部分 35 3.2.2.1 粉末的壓燒及製備 35 3.2.2.2 坯體的成形及燒結 36 3.3 實驗分析方法 38 3.3.1 變阻性質分析 38 3.3.2 阿基米德密度分析 38 3.3.3 Mott-Schottky plot分析 39 3.3.4 微結構分析 39 3.3.4.1 「SiO2、B2O3的額外添加」實驗 39 3.3.4.2 「Bi2O3/Sb2O3預先混合煆燒」實驗 及「ZnO/Co3O4/Mn3O4預先混合煆燒」實驗 40 3.3.5 X光繞射儀分析(XRD) 40 3.3.6 燒結收縮曲線分析 41 3.3.7 突波電流衝擊測試 41 3.3.8 晶粒電阻分析 42 3.3.9 交流阻抗分析 42 3.3.10 EPMA color mapping 42 3.3.11 介電譜分析 42 第四章、結果與討論 43 4.1 SiO2、B2O3的共同額外添加 43 4.1.1 不同SiO2添加量對各性質之影響 43 4.1.1.1 變阻性質 43 4.1.1.2 阿基米德密度分析 45 4.1.1.3 XRD分析 46 4.1.1.4 Mott-Schottky分析 47 4.1.1.5 微結構分析 49 4.1.2 不同B2O3添加量對各性質之影響 51 4.1.2.1 變阻性質 51 4.1.2.2 Mott-Schottky分析 53 4.1.2.3 阿基米德密度分析 54 4.1.2.4 微結構分析 55 4.2 Bi2O3 Sb2O3的預先煆燒處理 57 4.2.1 熱收縮曲線與坯體密度分析 57 4.2.2 XRD之半定量分析 61 4.2.3 微觀結構及其對變阻性質之影響 63 4.3 ZnO、Co3O4、Mn3O4預先煆燒 66 4.3.1 ZCM混合煆燒粉末 66 4.3.1.1 不同煆燒溫度對ZnO固溶程度之影響 66 4.3.1.2 ZCM煆燒產生之缺陷及其金屬氧化物之劑量比 67 4.3.2 總成陶瓷粉末 71 4.3.2.1 突波電流(surge current)衝擊測試 71 4.3.2.2 晶粒電阻分析 71 4.3.2.3 Mott-Schottky分析 76 4.3.2.4 介電譜 78 4.3.2.5 微觀結構分析 80 4.3.2.6 Cole-Cole plot分析 82 4.3.2.7 變阻性質 87 4.3.2.8 EPMA Color mapping 88 第五章、結論 93 參考文獻 95 附錄 99

    1. Kim, J., T. Kimura, and T. Yamaguchi, Microstructure development in Sb 2 O 3-doped ZnO. Journal of materials science, 1989. 24(7): p. 2581-2586.
    2. Ott, J., A. Lorenz, M. Harrer, E.A. Preissner, C. Hesse, A. Feltz, A. Whitehead, and M. Schreiber, The influence of Bi2O3 and Sb2O3 on the electrical properties of ZnO-based varistors. Journal of electroceramics, 2001. 6(2): p. 135-146.
    3. Rečnik, A., N. Daneu, T. Walther, and W. Mader, Structure and chemistry of basal‐plane inversion boundaries in antimony oxide‐doped zinc oxide. Journal of the American Ceramic Society, 2001. 84(11): p. 2657-2668.
    4. Daneu, N., A. Rečnik, S. Bernik, and D. Kolar, Microstructural Development in SnO2‐Doped ZnO–Bi2O3 Ceramics. Journal of the American Ceramic Society, 2000. 83(12): p. 3165-3171.
    5. Zhou, Z., K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, and K. Morita, Effects of dopants and hydrogen on the electrical conductivity of ZnO. Journal of the European Ceramic Society, 2004. 24(1): p. 139-146.
    6. Han, J., P. Mantas, and A. Senos, Effect of Al and Mn doping on the electrical conductivity of ZnO. Journal of the European Ceramic Society, 2001. 21(10-11): p. 1883-1886.
    7. CERVA, H. and W. RUSSWURM, Microstructure and crystal structure of bismuth oxide phases in zinc oxide varistor ceramics. Journal of the American Ceramic Society, 1988. 71(7): p. 522-530.
    8. Han, J., A. Senos, and P. Mantas, Varistor behaviour of Mn-doped ZnO ceramics. Journal of the European Ceramic Society, 2002. 22(9-10): p. 1653-1660.
    9. Einzinger, R., Metal oxide varistor action-a homojunction breakdown mechanism. Applications of Surface Science, 1978. 1(3): p. 329-340.
    10. Eda, K., Zinc oxide varistors. IEEE Electrical Insulation Magazine, 1989. 5(6): p. 28-30.
    11. Yano, Y., Y. Takai, and H. Morooka, Interface states in ZnO varistor with Mn, Co, and Cu impurities. Journal of materials research, 1994. 9(1): p. 112-118.
    12. Stucki, F. and F. Greuter, Key role of oxygen at zinc oxide varistor grain boundaries. Applied Physics Letters, 1990. 57(5): p. 446-448.
    13. Sonder, E., M. Austin, and D. Kinser, Effect of oxidizing and reducing atmospheres at elevated temperatures on the electrical properties of zinc oxide varistors. Journal of applied physics, 1983. 54(6): p. 3566-3572.
    14. Matsuoka, M., Nonohmic properties of zinc oxide ceramics. Japanese Journal of Applied Physics, 1971. 10(6): p. 736.
    15. Clarke, D.R., Varistor ceramics. Journal of the American Ceramic Society, 1999. 82(3): p. 485-502.
    16. Eda, K., A. Iga, and M. Matsuoka, Degradation mechanism of non‐ohmic zinc oxide ceramics. Journal of Applied Physics, 1980. 51(5): p. 2678-2684.
    17. Gupta, T.K., Application of zinc oxide varistors. Journal of the American Ceramic Society, 1990. 73(7): p. 1817-1840.
    18. Gupta, T.K. and W.G. Carlson, A grain-boundary defect model for instability/stability of a ZnO varistor. Journal of materials science, 1985. 20(10): p. 3487-3500.
    19. Sonder, E., L.M. Levinson, and W. Katz, Role of short‐circuiting pathways in reduced ZnO varistors. Journal of applied physics, 1985. 58(11): p. 4420-4425.
    20. Mukae, K., K. Tsuda, and I. Nagasawa, Capacitance‐vs‐voltage characteristics of ZnO varistors. Journal of Applied Physics, 1979. 50(6): p. 4475-4476.
    21. Santos, M.R., P.R. Bueno, E. Longo, and J.A. Varela, Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistors. Journal of the European Ceramic Society, 2001. 21(2): p. 161-167.
    22. Bartkowiak, M., M.G. Comber, and G.D. Mahan, Influence of nonuniformity of ZnO varistors on their energy absorption capability. IEEE Transactions on power delivery, 2001. 16(4): p. 591-598.
    23. Bartkowiak, M., M. Comber, and G. Mahan, Failure modes and energy absorption capability of ZnO varistors. IEEE transactions on power delivery, 1999. 14(1): p. 152-162.
    24. Vojta, A. and D.R. Clarke, Microstructural origin of current localization and “puncture’’failure in varistor ceramics. Journal of applied physics, 1997. 81(2): p. 985-993.
    25. Houabes, M. and R. Metz, Rare earth oxides effects on both the threshold voltage and energy absorption capability of ZnO varistors. Ceramics International, 2007. 33(7): p. 1191-1197.
    26. Morris, W.G., Physical properties of the electrical barriers in varistors. Journal of Vacuum Science and Technology, 1976. 13(4): p. 926-931.
    27. Levinson, L.M. and H.R. Philipp, The physics of metal oxide varistors. Journal of Applied Physics, 1975. 46(3): p. 1332-1341.
    28. Mahan, G., L.M. Levinson, and H.R. Philipp, Theory of conduction in ZnO varistors. Journal of Applied Physics, 1979. 50(4): p. 2799-2812.
    29. Wong, J., Barrier voltage measurement in metal oxide varistors. Journal of Applied Physics, 1976. 47(11): p. 4971-4974.
    30. Carlson, W. and T. Gupta, Improved varistor nonlinearity via donor impurity doping. Journal of Applied Physics, 1982. 53(8): p. 5746-5753.
    31. Fan, J. and R. Freer, Deep level transient spectroscopy of zinc oxide varistors doped with aluminum oxide and/or silver oxide. Journal of the American Ceramic Society, 1994. 77(10): p. 2663-2668.
    32. Shen, J., Y. Zhang, M. Li, R. Bao, M. Shen, C. Huang, G. Zhang, Y. Ke, H. Li, and S. Jiang, Effects of Fe and Al co-doping on the leakage current density and clamp voltage ratio of ZnO varistor. Journal of Alloys and Compounds, 2018. 747: p. 1018-1026.
    33. Chen, X., W. Zhang, S. Bai, and Y. Du, Densification and characterization of SiO2-B2O3-CaO-MgO glass/Al2O3 composites for LTCC application. Ceramics International, 2013. 39(6): p. 6355-6361.
    34. Hwang, J.H., T.O. Mason, and V.P. Dravid, Microanalytical Determination of ZnO Solidus and Liquidus Boundaries in the ZnO‐Bi2O3 System. Journal of the American Ceramic Society, 1994. 77(6): p. 1499-1504.
    35. Wan, S., W. Lu, and X. Wang, Low‐temperature sintering and electrical properties of ZnO–Bi2O3–TiO2–Co2O3–MnCO3‐based varistor with Bi2O3–B2O3 frit for multilayer chip varistor applications. Journal of the American Ceramic Society, 2010. 93(10): p. 3319-3323.
    36. Xu, Z., S. Ma, R. Chu, J. Hao, L. Cheng, and G. Li, Low-temperature sintering of high potential gradient B 2 O 3-doped ZnO varistors. Journal of Materials Science: Materials in Electronics, 2015. 26(7): p. 4997-5000.
    37. Leite, E., M.A.L. Nobre, E. Longo, and J.A. Varela, Microstructural development of ZnO varistor during reactive liquid phase sintering. Journal of Materials Science, 1996. 31(20): p. 5391-5398.
    38. Inada, M., Crystal phases of nonohmic zinc oxide ceramics. Japanese Journal of Applied Physics, 1978. 17(1): p. 1.
    39. Cheng, P.-F., S.-T. Li, and J.-Y. Li, Study of intrinsic defects in ZnO varistor ceramics by dielectric spectroscopy. Acta Physica Sinica, 2009. 58(1): p. 523-528.
    40. Ramirez, M., W. Bassi, P.R. Bueno, E. Longo, and J.A. Varela, Comparative degradation of ZnO-and SnO2-based polycrystalline non-ohmic devices by current pulse stress. Journal of Physics D: Applied Physics, 2008. 41(12): p. 122002.
    41. Metz, R., H. Delalu, J. Vignalou, N. Achard, and M. Elkhatib, Electrical properties of varistors in relation to their true bismuth composition after sintering. Materials Chemistry and Physics, 2000. 63(2): p. 157-162.
    42. Šulcova, P. and M. Trojan, New green pigments; ZnO–CoO. Dyes and pigments, 1999. 40(1): p. 83-86.
    43. Ziegler, E., A. Heinrich, H. Oppermann, and G. Stöver, Growth and electrical properties of non‐stoichiometric ZnO single crystals doped with Co. physica status solidi (a), 1982. 70(2): p. 563-570.
    44. Li, J., S. Li, P. Cheng, and M.A. Alim, Advances in ZnO–Bi 2 O 3 based varistors. Journal of Materials Science: Materials in Electronics, 2015. 26(7): p. 4782-4809.
    45. Chen, Y.C., C.Y. Shen, and L. Wu, Grain growth processes in ZnO varistors with various valence states of manganese and cobalt. Journal of applied physics, 1991. 69(12): p. 8363-8367.
    46. Norris, L.F. and G. Parravano, Sintering of zinc oxide. Journal of the American Ceramic Society, 1963. 46(9): p. 449-452.
    47. Lee, W.-H., W.-T. Chen, Y.-C. Lee, S.-P. Lin, and T. Yang, Relationship between microstructure and electrical properties of ZnO-based multilayer varistor. Japanese journal of applied physics, 2006. 45(6R): p. 5126.
    48. Cai, J., Y.H. Lin, M. Li, C.W. Nan, J. He, and F. Yuan, Sintering temperature dependence of grain boundary resistivity in a rare‐earth‐doped ZnO varistor. Journal of the American Ceramic Society, 2007. 90(1): p. 291-294.
    49. Inada, M., Formation mechanism of nonohmic zinc oxide ceramics. Japanese Journal of Applied Physics, 1980. 19(3): p. 409.
    50. Olsson, E., G. Dunlop, and R. Österlund, Development of functional microstructure during sintering of a ZnO varistor material. Journal of the American Ceramic Society, 1993. 76(1): p. 65-71.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE